Pathological consequences of MICU1 mutations on mitochondrial calcium signalling and bioenergetics

Loss of function mutations of the protein MICU1, a regulator of mitochondrial Ca2+ uptake, cause a neuronal and muscular disorder characterised by impaired cognition, muscle weakness and an extrapyramidal motor disorder. We have shown previously that MICU1 mutations cause increased resting mitochond...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochimica et biophysica acta 2017-06, Vol.1864 (6), p.1009-1017
Hauptverfasser: Bhosale, Gauri, Sharpe, Jenny A., Koh, Amanda, Kouli, Antonina, Szabadkai, Gyorgy, Duchen, Michael R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1017
container_issue 6
container_start_page 1009
container_title Biochimica et biophysica acta
container_volume 1864
creator Bhosale, Gauri
Sharpe, Jenny A.
Koh, Amanda
Kouli, Antonina
Szabadkai, Gyorgy
Duchen, Michael R.
description Loss of function mutations of the protein MICU1, a regulator of mitochondrial Ca2+ uptake, cause a neuronal and muscular disorder characterised by impaired cognition, muscle weakness and an extrapyramidal motor disorder. We have shown previously that MICU1 mutations cause increased resting mitochondrial Ca2+ concentration ([Ca2+]m). We now explore the functional consequences of MICU1 mutations in patient derived fibroblasts in order to clarify the underlying pathophysiology of this disorder. We propose that deregulation of mitochondrial Ca2+ uptake through loss of MICU1 raises resting [Ca2+]m, initiating a futile Ca2+ cycle, whereby continuous mitochondrial Ca2+ influx is balanced by Ca2+ efflux through the sodium calcium exchanger (NLCXm). Thus, inhibition of NCLXm by CGP-37157 caused rapid mitochondrial Ca2+ accumulation in patient but not control cells. We suggest that increased NCLX activity will increase sodium/proton exchange, potentially undermining oxidative phosphorylation, although this is balanced by dephosphorylation and activation of pyruvate dehydrogenase (PDH) in response to the increased [Ca2+]m. Consistent with this model, while ATP content in patient derived or control fibroblasts was not different, ATP increased significantly in response to CGP-37157 in the patient but not the control cells. In addition, EMRE expression levels were altered in MICU1 patient cells compared to the controls. The MICU1 mutations were associated with mitochondrial fragmentation which we show is related to altered DRP1 phosphorylation. Thus, MICU1 serves as a signal–noise discriminator in mitochondrial calcium signalling, limiting the energetic costs of mitochondrial Ca2+ signalling which may undermine oxidative phosphorylation, especially in tissues with highly dynamic energetic demands. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech. •Loss of MICU1 protein expression in human fibroblasts increases resting mitochondrial calcium concentration ([Ca2+]m).•The increased mitochondrial Ca2+ uptake causes a futile Ca2+ cycle in MICU1 deficient cells.•Increased [Ca2+]mactivates pyruvate dehydrogenase (PDH) by activating PDH phosphatase, consequently dephosphorylating PDH.•Loss of MICU1 leads to modifications of the MCU complex composition and mitochondrial fragmentation.
doi_str_mv 10.1016/j.bbamcr.2017.01.015
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1862939457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016748891730023X</els_id><sourcerecordid>1862939457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-de3e6fae5b351e3fb52e94855bf0ff6bef40f5e4cf971f25cfc3999868d6b843</originalsourceid><addsrcrecordid>eNp9UcGOFCEQJUbjjqt_YEwfvfQI3dANFxMzWXWTNXpYzwTooocJDSvQm_j30pl11YuVSupQr96D9xB6TfCeYDK8O-21VotJ-w6TcY9JbfYE7QgfRdsxMTxFuwobW8q5uEAvcj7hWnRkz9FFx0nfcSF2SH9T5Rh9nJ1RvjExZPixQjCQm2ibL9eH76RZ1qKKq6smhmZxJZpjDFNy24Hyxq1Lk90clPcuzI0KU6NdhABphuJMfomeWeUzvHqYl-j249Xt4XN78_XT9eHDTWvo0Jd2gh4Gq4DpnhHorWYdCMoZ0xZbO2iwFFsG1FgxEtsxY00vhOADnwbNaX-J3p9p71a9wGQglKS8vEtuUemnjMrJfzfBHeUc7yWjXfWIVYK3DwQpVg9ykYvLBrxXAeKaJeFDJ3pB2Vih9Aw1KeacwD7KECy3dORJntORWzoSk9qbwpu_n_h49DuOP3-A6tO9gySzcVsak0tgipyi-7_CLxqBplw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1862939457</pqid></control><display><type>article</type><title>Pathological consequences of MICU1 mutations on mitochondrial calcium signalling and bioenergetics</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bhosale, Gauri ; Sharpe, Jenny A. ; Koh, Amanda ; Kouli, Antonina ; Szabadkai, Gyorgy ; Duchen, Michael R.</creator><creatorcontrib>Bhosale, Gauri ; Sharpe, Jenny A. ; Koh, Amanda ; Kouli, Antonina ; Szabadkai, Gyorgy ; Duchen, Michael R.</creatorcontrib><description>Loss of function mutations of the protein MICU1, a regulator of mitochondrial Ca2+ uptake, cause a neuronal and muscular disorder characterised by impaired cognition, muscle weakness and an extrapyramidal motor disorder. We have shown previously that MICU1 mutations cause increased resting mitochondrial Ca2+ concentration ([Ca2+]m). We now explore the functional consequences of MICU1 mutations in patient derived fibroblasts in order to clarify the underlying pathophysiology of this disorder. We propose that deregulation of mitochondrial Ca2+ uptake through loss of MICU1 raises resting [Ca2+]m, initiating a futile Ca2+ cycle, whereby continuous mitochondrial Ca2+ influx is balanced by Ca2+ efflux through the sodium calcium exchanger (NLCXm). Thus, inhibition of NCLXm by CGP-37157 caused rapid mitochondrial Ca2+ accumulation in patient but not control cells. We suggest that increased NCLX activity will increase sodium/proton exchange, potentially undermining oxidative phosphorylation, although this is balanced by dephosphorylation and activation of pyruvate dehydrogenase (PDH) in response to the increased [Ca2+]m. Consistent with this model, while ATP content in patient derived or control fibroblasts was not different, ATP increased significantly in response to CGP-37157 in the patient but not the control cells. In addition, EMRE expression levels were altered in MICU1 patient cells compared to the controls. The MICU1 mutations were associated with mitochondrial fragmentation which we show is related to altered DRP1 phosphorylation. Thus, MICU1 serves as a signal–noise discriminator in mitochondrial calcium signalling, limiting the energetic costs of mitochondrial Ca2+ signalling which may undermine oxidative phosphorylation, especially in tissues with highly dynamic energetic demands. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech. •Loss of MICU1 protein expression in human fibroblasts increases resting mitochondrial calcium concentration ([Ca2+]m).•The increased mitochondrial Ca2+ uptake causes a futile Ca2+ cycle in MICU1 deficient cells.•Increased [Ca2+]mactivates pyruvate dehydrogenase (PDH) by activating PDH phosphatase, consequently dephosphorylating PDH.•Loss of MICU1 leads to modifications of the MCU complex composition and mitochondrial fragmentation.</description><identifier>ISSN: 0167-4889</identifier><identifier>ISSN: 0006-3002</identifier><identifier>EISSN: 1879-2596</identifier><identifier>EISSN: 1878-2434</identifier><identifier>DOI: 10.1016/j.bbamcr.2017.01.015</identifier><identifier>PMID: 28132899</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Calcium ; Calcium Signaling ; Calcium-Binding Proteins - genetics ; Cation Transport Proteins - genetics ; Cells, Cultured ; Energy Metabolism ; Humans ; MICU1 ; Mitochondria ; Mitochondria - metabolism ; Mitochondrial Membrane Transport Proteins - genetics ; Mutation ; PDH</subject><ispartof>Biochimica et biophysica acta, 2017-06, Vol.1864 (6), p.1009-1017</ispartof><rights>2017 The Authors</rights><rights>Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.</rights><rights>2017 The Authors 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-de3e6fae5b351e3fb52e94855bf0ff6bef40f5e4cf971f25cfc3999868d6b843</citedby><cites>FETCH-LOGICAL-c463t-de3e6fae5b351e3fb52e94855bf0ff6bef40f5e4cf971f25cfc3999868d6b843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bbamcr.2017.01.015$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28132899$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bhosale, Gauri</creatorcontrib><creatorcontrib>Sharpe, Jenny A.</creatorcontrib><creatorcontrib>Koh, Amanda</creatorcontrib><creatorcontrib>Kouli, Antonina</creatorcontrib><creatorcontrib>Szabadkai, Gyorgy</creatorcontrib><creatorcontrib>Duchen, Michael R.</creatorcontrib><title>Pathological consequences of MICU1 mutations on mitochondrial calcium signalling and bioenergetics</title><title>Biochimica et biophysica acta</title><addtitle>Biochim Biophys Acta Mol Cell Res</addtitle><description>Loss of function mutations of the protein MICU1, a regulator of mitochondrial Ca2+ uptake, cause a neuronal and muscular disorder characterised by impaired cognition, muscle weakness and an extrapyramidal motor disorder. We have shown previously that MICU1 mutations cause increased resting mitochondrial Ca2+ concentration ([Ca2+]m). We now explore the functional consequences of MICU1 mutations in patient derived fibroblasts in order to clarify the underlying pathophysiology of this disorder. We propose that deregulation of mitochondrial Ca2+ uptake through loss of MICU1 raises resting [Ca2+]m, initiating a futile Ca2+ cycle, whereby continuous mitochondrial Ca2+ influx is balanced by Ca2+ efflux through the sodium calcium exchanger (NLCXm). Thus, inhibition of NCLXm by CGP-37157 caused rapid mitochondrial Ca2+ accumulation in patient but not control cells. We suggest that increased NCLX activity will increase sodium/proton exchange, potentially undermining oxidative phosphorylation, although this is balanced by dephosphorylation and activation of pyruvate dehydrogenase (PDH) in response to the increased [Ca2+]m. Consistent with this model, while ATP content in patient derived or control fibroblasts was not different, ATP increased significantly in response to CGP-37157 in the patient but not the control cells. In addition, EMRE expression levels were altered in MICU1 patient cells compared to the controls. The MICU1 mutations were associated with mitochondrial fragmentation which we show is related to altered DRP1 phosphorylation. Thus, MICU1 serves as a signal–noise discriminator in mitochondrial calcium signalling, limiting the energetic costs of mitochondrial Ca2+ signalling which may undermine oxidative phosphorylation, especially in tissues with highly dynamic energetic demands. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech. •Loss of MICU1 protein expression in human fibroblasts increases resting mitochondrial calcium concentration ([Ca2+]m).•The increased mitochondrial Ca2+ uptake causes a futile Ca2+ cycle in MICU1 deficient cells.•Increased [Ca2+]mactivates pyruvate dehydrogenase (PDH) by activating PDH phosphatase, consequently dephosphorylating PDH.•Loss of MICU1 leads to modifications of the MCU complex composition and mitochondrial fragmentation.</description><subject>Calcium</subject><subject>Calcium Signaling</subject><subject>Calcium-Binding Proteins - genetics</subject><subject>Cation Transport Proteins - genetics</subject><subject>Cells, Cultured</subject><subject>Energy Metabolism</subject><subject>Humans</subject><subject>MICU1</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Membrane Transport Proteins - genetics</subject><subject>Mutation</subject><subject>PDH</subject><issn>0167-4889</issn><issn>0006-3002</issn><issn>1879-2596</issn><issn>1878-2434</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UcGOFCEQJUbjjqt_YEwfvfQI3dANFxMzWXWTNXpYzwTooocJDSvQm_j30pl11YuVSupQr96D9xB6TfCeYDK8O-21VotJ-w6TcY9JbfYE7QgfRdsxMTxFuwobW8q5uEAvcj7hWnRkz9FFx0nfcSF2SH9T5Rh9nJ1RvjExZPixQjCQm2ibL9eH76RZ1qKKq6smhmZxJZpjDFNy24Hyxq1Lk90clPcuzI0KU6NdhABphuJMfomeWeUzvHqYl-j249Xt4XN78_XT9eHDTWvo0Jd2gh4Gq4DpnhHorWYdCMoZ0xZbO2iwFFsG1FgxEtsxY00vhOADnwbNaX-J3p9p71a9wGQglKS8vEtuUemnjMrJfzfBHeUc7yWjXfWIVYK3DwQpVg9ykYvLBrxXAeKaJeFDJ3pB2Vih9Aw1KeacwD7KECy3dORJntORWzoSk9qbwpu_n_h49DuOP3-A6tO9gySzcVsak0tgipyi-7_CLxqBplw</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Bhosale, Gauri</creator><creator>Sharpe, Jenny A.</creator><creator>Koh, Amanda</creator><creator>Kouli, Antonina</creator><creator>Szabadkai, Gyorgy</creator><creator>Duchen, Michael R.</creator><general>Elsevier B.V</general><general>Elsevier Pub. Co</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201706</creationdate><title>Pathological consequences of MICU1 mutations on mitochondrial calcium signalling and bioenergetics</title><author>Bhosale, Gauri ; Sharpe, Jenny A. ; Koh, Amanda ; Kouli, Antonina ; Szabadkai, Gyorgy ; Duchen, Michael R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-de3e6fae5b351e3fb52e94855bf0ff6bef40f5e4cf971f25cfc3999868d6b843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Calcium</topic><topic>Calcium Signaling</topic><topic>Calcium-Binding Proteins - genetics</topic><topic>Cation Transport Proteins - genetics</topic><topic>Cells, Cultured</topic><topic>Energy Metabolism</topic><topic>Humans</topic><topic>MICU1</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Membrane Transport Proteins - genetics</topic><topic>Mutation</topic><topic>PDH</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhosale, Gauri</creatorcontrib><creatorcontrib>Sharpe, Jenny A.</creatorcontrib><creatorcontrib>Koh, Amanda</creatorcontrib><creatorcontrib>Kouli, Antonina</creatorcontrib><creatorcontrib>Szabadkai, Gyorgy</creatorcontrib><creatorcontrib>Duchen, Michael R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochimica et biophysica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhosale, Gauri</au><au>Sharpe, Jenny A.</au><au>Koh, Amanda</au><au>Kouli, Antonina</au><au>Szabadkai, Gyorgy</au><au>Duchen, Michael R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pathological consequences of MICU1 mutations on mitochondrial calcium signalling and bioenergetics</atitle><jtitle>Biochimica et biophysica acta</jtitle><addtitle>Biochim Biophys Acta Mol Cell Res</addtitle><date>2017-06</date><risdate>2017</risdate><volume>1864</volume><issue>6</issue><spage>1009</spage><epage>1017</epage><pages>1009-1017</pages><issn>0167-4889</issn><issn>0006-3002</issn><eissn>1879-2596</eissn><eissn>1878-2434</eissn><abstract>Loss of function mutations of the protein MICU1, a regulator of mitochondrial Ca2+ uptake, cause a neuronal and muscular disorder characterised by impaired cognition, muscle weakness and an extrapyramidal motor disorder. We have shown previously that MICU1 mutations cause increased resting mitochondrial Ca2+ concentration ([Ca2+]m). We now explore the functional consequences of MICU1 mutations in patient derived fibroblasts in order to clarify the underlying pathophysiology of this disorder. We propose that deregulation of mitochondrial Ca2+ uptake through loss of MICU1 raises resting [Ca2+]m, initiating a futile Ca2+ cycle, whereby continuous mitochondrial Ca2+ influx is balanced by Ca2+ efflux through the sodium calcium exchanger (NLCXm). Thus, inhibition of NCLXm by CGP-37157 caused rapid mitochondrial Ca2+ accumulation in patient but not control cells. We suggest that increased NCLX activity will increase sodium/proton exchange, potentially undermining oxidative phosphorylation, although this is balanced by dephosphorylation and activation of pyruvate dehydrogenase (PDH) in response to the increased [Ca2+]m. Consistent with this model, while ATP content in patient derived or control fibroblasts was not different, ATP increased significantly in response to CGP-37157 in the patient but not the control cells. In addition, EMRE expression levels were altered in MICU1 patient cells compared to the controls. The MICU1 mutations were associated with mitochondrial fragmentation which we show is related to altered DRP1 phosphorylation. Thus, MICU1 serves as a signal–noise discriminator in mitochondrial calcium signalling, limiting the energetic costs of mitochondrial Ca2+ signalling which may undermine oxidative phosphorylation, especially in tissues with highly dynamic energetic demands. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech. •Loss of MICU1 protein expression in human fibroblasts increases resting mitochondrial calcium concentration ([Ca2+]m).•The increased mitochondrial Ca2+ uptake causes a futile Ca2+ cycle in MICU1 deficient cells.•Increased [Ca2+]mactivates pyruvate dehydrogenase (PDH) by activating PDH phosphatase, consequently dephosphorylating PDH.•Loss of MICU1 leads to modifications of the MCU complex composition and mitochondrial fragmentation.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>28132899</pmid><doi>10.1016/j.bbamcr.2017.01.015</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-4889
ispartof Biochimica et biophysica acta, 2017-06, Vol.1864 (6), p.1009-1017
issn 0167-4889
0006-3002
1879-2596
1878-2434
language eng
recordid cdi_proquest_miscellaneous_1862939457
source MEDLINE; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Calcium
Calcium Signaling
Calcium-Binding Proteins - genetics
Cation Transport Proteins - genetics
Cells, Cultured
Energy Metabolism
Humans
MICU1
Mitochondria
Mitochondria - metabolism
Mitochondrial Membrane Transport Proteins - genetics
Mutation
PDH
title Pathological consequences of MICU1 mutations on mitochondrial calcium signalling and bioenergetics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A42%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pathological%20consequences%20of%20MICU1%20mutations%20on%20mitochondrial%20calcium%20signalling%20and%20bioenergetics&rft.jtitle=Biochimica%20et%20biophysica%20acta&rft.au=Bhosale,%20Gauri&rft.date=2017-06&rft.volume=1864&rft.issue=6&rft.spage=1009&rft.epage=1017&rft.pages=1009-1017&rft.issn=0167-4889&rft.eissn=1879-2596&rft_id=info:doi/10.1016/j.bbamcr.2017.01.015&rft_dat=%3Cproquest_pubme%3E1862939457%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1862939457&rft_id=info:pmid/28132899&rft_els_id=S016748891730023X&rfr_iscdi=true