Pathological consequences of MICU1 mutations on mitochondrial calcium signalling and bioenergetics
Loss of function mutations of the protein MICU1, a regulator of mitochondrial Ca2+ uptake, cause a neuronal and muscular disorder characterised by impaired cognition, muscle weakness and an extrapyramidal motor disorder. We have shown previously that MICU1 mutations cause increased resting mitochond...
Gespeichert in:
Veröffentlicht in: | Biochimica et biophysica acta 2017-06, Vol.1864 (6), p.1009-1017 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1017 |
---|---|
container_issue | 6 |
container_start_page | 1009 |
container_title | Biochimica et biophysica acta |
container_volume | 1864 |
creator | Bhosale, Gauri Sharpe, Jenny A. Koh, Amanda Kouli, Antonina Szabadkai, Gyorgy Duchen, Michael R. |
description | Loss of function mutations of the protein MICU1, a regulator of mitochondrial Ca2+ uptake, cause a neuronal and muscular disorder characterised by impaired cognition, muscle weakness and an extrapyramidal motor disorder. We have shown previously that MICU1 mutations cause increased resting mitochondrial Ca2+ concentration ([Ca2+]m). We now explore the functional consequences of MICU1 mutations in patient derived fibroblasts in order to clarify the underlying pathophysiology of this disorder. We propose that deregulation of mitochondrial Ca2+ uptake through loss of MICU1 raises resting [Ca2+]m, initiating a futile Ca2+ cycle, whereby continuous mitochondrial Ca2+ influx is balanced by Ca2+ efflux through the sodium calcium exchanger (NLCXm). Thus, inhibition of NCLXm by CGP-37157 caused rapid mitochondrial Ca2+ accumulation in patient but not control cells. We suggest that increased NCLX activity will increase sodium/proton exchange, potentially undermining oxidative phosphorylation, although this is balanced by dephosphorylation and activation of pyruvate dehydrogenase (PDH) in response to the increased [Ca2+]m. Consistent with this model, while ATP content in patient derived or control fibroblasts was not different, ATP increased significantly in response to CGP-37157 in the patient but not the control cells. In addition, EMRE expression levels were altered in MICU1 patient cells compared to the controls. The MICU1 mutations were associated with mitochondrial fragmentation which we show is related to altered DRP1 phosphorylation. Thus, MICU1 serves as a signal–noise discriminator in mitochondrial calcium signalling, limiting the energetic costs of mitochondrial Ca2+ signalling which may undermine oxidative phosphorylation, especially in tissues with highly dynamic energetic demands. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
•Loss of MICU1 protein expression in human fibroblasts increases resting mitochondrial calcium concentration ([Ca2+]m).•The increased mitochondrial Ca2+ uptake causes a futile Ca2+ cycle in MICU1 deficient cells.•Increased [Ca2+]mactivates pyruvate dehydrogenase (PDH) by activating PDH phosphatase, consequently dephosphorylating PDH.•Loss of MICU1 leads to modifications of the MCU complex composition and mitochondrial fragmentation. |
doi_str_mv | 10.1016/j.bbamcr.2017.01.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1862939457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016748891730023X</els_id><sourcerecordid>1862939457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-de3e6fae5b351e3fb52e94855bf0ff6bef40f5e4cf971f25cfc3999868d6b843</originalsourceid><addsrcrecordid>eNp9UcGOFCEQJUbjjqt_YEwfvfQI3dANFxMzWXWTNXpYzwTooocJDSvQm_j30pl11YuVSupQr96D9xB6TfCeYDK8O-21VotJ-w6TcY9JbfYE7QgfRdsxMTxFuwobW8q5uEAvcj7hWnRkz9FFx0nfcSF2SH9T5Rh9nJ1RvjExZPixQjCQm2ibL9eH76RZ1qKKq6smhmZxJZpjDFNy24Hyxq1Lk90clPcuzI0KU6NdhABphuJMfomeWeUzvHqYl-j249Xt4XN78_XT9eHDTWvo0Jd2gh4Gq4DpnhHorWYdCMoZ0xZbO2iwFFsG1FgxEtsxY00vhOADnwbNaX-J3p9p71a9wGQglKS8vEtuUemnjMrJfzfBHeUc7yWjXfWIVYK3DwQpVg9ykYvLBrxXAeKaJeFDJ3pB2Vih9Aw1KeacwD7KECy3dORJntORWzoSk9qbwpu_n_h49DuOP3-A6tO9gySzcVsak0tgipyi-7_CLxqBplw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1862939457</pqid></control><display><type>article</type><title>Pathological consequences of MICU1 mutations on mitochondrial calcium signalling and bioenergetics</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bhosale, Gauri ; Sharpe, Jenny A. ; Koh, Amanda ; Kouli, Antonina ; Szabadkai, Gyorgy ; Duchen, Michael R.</creator><creatorcontrib>Bhosale, Gauri ; Sharpe, Jenny A. ; Koh, Amanda ; Kouli, Antonina ; Szabadkai, Gyorgy ; Duchen, Michael R.</creatorcontrib><description>Loss of function mutations of the protein MICU1, a regulator of mitochondrial Ca2+ uptake, cause a neuronal and muscular disorder characterised by impaired cognition, muscle weakness and an extrapyramidal motor disorder. We have shown previously that MICU1 mutations cause increased resting mitochondrial Ca2+ concentration ([Ca2+]m). We now explore the functional consequences of MICU1 mutations in patient derived fibroblasts in order to clarify the underlying pathophysiology of this disorder. We propose that deregulation of mitochondrial Ca2+ uptake through loss of MICU1 raises resting [Ca2+]m, initiating a futile Ca2+ cycle, whereby continuous mitochondrial Ca2+ influx is balanced by Ca2+ efflux through the sodium calcium exchanger (NLCXm). Thus, inhibition of NCLXm by CGP-37157 caused rapid mitochondrial Ca2+ accumulation in patient but not control cells. We suggest that increased NCLX activity will increase sodium/proton exchange, potentially undermining oxidative phosphorylation, although this is balanced by dephosphorylation and activation of pyruvate dehydrogenase (PDH) in response to the increased [Ca2+]m. Consistent with this model, while ATP content in patient derived or control fibroblasts was not different, ATP increased significantly in response to CGP-37157 in the patient but not the control cells. In addition, EMRE expression levels were altered in MICU1 patient cells compared to the controls. The MICU1 mutations were associated with mitochondrial fragmentation which we show is related to altered DRP1 phosphorylation. Thus, MICU1 serves as a signal–noise discriminator in mitochondrial calcium signalling, limiting the energetic costs of mitochondrial Ca2+ signalling which may undermine oxidative phosphorylation, especially in tissues with highly dynamic energetic demands. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
•Loss of MICU1 protein expression in human fibroblasts increases resting mitochondrial calcium concentration ([Ca2+]m).•The increased mitochondrial Ca2+ uptake causes a futile Ca2+ cycle in MICU1 deficient cells.•Increased [Ca2+]mactivates pyruvate dehydrogenase (PDH) by activating PDH phosphatase, consequently dephosphorylating PDH.•Loss of MICU1 leads to modifications of the MCU complex composition and mitochondrial fragmentation.</description><identifier>ISSN: 0167-4889</identifier><identifier>ISSN: 0006-3002</identifier><identifier>EISSN: 1879-2596</identifier><identifier>EISSN: 1878-2434</identifier><identifier>DOI: 10.1016/j.bbamcr.2017.01.015</identifier><identifier>PMID: 28132899</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Calcium ; Calcium Signaling ; Calcium-Binding Proteins - genetics ; Cation Transport Proteins - genetics ; Cells, Cultured ; Energy Metabolism ; Humans ; MICU1 ; Mitochondria ; Mitochondria - metabolism ; Mitochondrial Membrane Transport Proteins - genetics ; Mutation ; PDH</subject><ispartof>Biochimica et biophysica acta, 2017-06, Vol.1864 (6), p.1009-1017</ispartof><rights>2017 The Authors</rights><rights>Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.</rights><rights>2017 The Authors 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-de3e6fae5b351e3fb52e94855bf0ff6bef40f5e4cf971f25cfc3999868d6b843</citedby><cites>FETCH-LOGICAL-c463t-de3e6fae5b351e3fb52e94855bf0ff6bef40f5e4cf971f25cfc3999868d6b843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bbamcr.2017.01.015$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28132899$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bhosale, Gauri</creatorcontrib><creatorcontrib>Sharpe, Jenny A.</creatorcontrib><creatorcontrib>Koh, Amanda</creatorcontrib><creatorcontrib>Kouli, Antonina</creatorcontrib><creatorcontrib>Szabadkai, Gyorgy</creatorcontrib><creatorcontrib>Duchen, Michael R.</creatorcontrib><title>Pathological consequences of MICU1 mutations on mitochondrial calcium signalling and bioenergetics</title><title>Biochimica et biophysica acta</title><addtitle>Biochim Biophys Acta Mol Cell Res</addtitle><description>Loss of function mutations of the protein MICU1, a regulator of mitochondrial Ca2+ uptake, cause a neuronal and muscular disorder characterised by impaired cognition, muscle weakness and an extrapyramidal motor disorder. We have shown previously that MICU1 mutations cause increased resting mitochondrial Ca2+ concentration ([Ca2+]m). We now explore the functional consequences of MICU1 mutations in patient derived fibroblasts in order to clarify the underlying pathophysiology of this disorder. We propose that deregulation of mitochondrial Ca2+ uptake through loss of MICU1 raises resting [Ca2+]m, initiating a futile Ca2+ cycle, whereby continuous mitochondrial Ca2+ influx is balanced by Ca2+ efflux through the sodium calcium exchanger (NLCXm). Thus, inhibition of NCLXm by CGP-37157 caused rapid mitochondrial Ca2+ accumulation in patient but not control cells. We suggest that increased NCLX activity will increase sodium/proton exchange, potentially undermining oxidative phosphorylation, although this is balanced by dephosphorylation and activation of pyruvate dehydrogenase (PDH) in response to the increased [Ca2+]m. Consistent with this model, while ATP content in patient derived or control fibroblasts was not different, ATP increased significantly in response to CGP-37157 in the patient but not the control cells. In addition, EMRE expression levels were altered in MICU1 patient cells compared to the controls. The MICU1 mutations were associated with mitochondrial fragmentation which we show is related to altered DRP1 phosphorylation. Thus, MICU1 serves as a signal–noise discriminator in mitochondrial calcium signalling, limiting the energetic costs of mitochondrial Ca2+ signalling which may undermine oxidative phosphorylation, especially in tissues with highly dynamic energetic demands. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
•Loss of MICU1 protein expression in human fibroblasts increases resting mitochondrial calcium concentration ([Ca2+]m).•The increased mitochondrial Ca2+ uptake causes a futile Ca2+ cycle in MICU1 deficient cells.•Increased [Ca2+]mactivates pyruvate dehydrogenase (PDH) by activating PDH phosphatase, consequently dephosphorylating PDH.•Loss of MICU1 leads to modifications of the MCU complex composition and mitochondrial fragmentation.</description><subject>Calcium</subject><subject>Calcium Signaling</subject><subject>Calcium-Binding Proteins - genetics</subject><subject>Cation Transport Proteins - genetics</subject><subject>Cells, Cultured</subject><subject>Energy Metabolism</subject><subject>Humans</subject><subject>MICU1</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Membrane Transport Proteins - genetics</subject><subject>Mutation</subject><subject>PDH</subject><issn>0167-4889</issn><issn>0006-3002</issn><issn>1879-2596</issn><issn>1878-2434</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UcGOFCEQJUbjjqt_YEwfvfQI3dANFxMzWXWTNXpYzwTooocJDSvQm_j30pl11YuVSupQr96D9xB6TfCeYDK8O-21VotJ-w6TcY9JbfYE7QgfRdsxMTxFuwobW8q5uEAvcj7hWnRkz9FFx0nfcSF2SH9T5Rh9nJ1RvjExZPixQjCQm2ibL9eH76RZ1qKKq6smhmZxJZpjDFNy24Hyxq1Lk90clPcuzI0KU6NdhABphuJMfomeWeUzvHqYl-j249Xt4XN78_XT9eHDTWvo0Jd2gh4Gq4DpnhHorWYdCMoZ0xZbO2iwFFsG1FgxEtsxY00vhOADnwbNaX-J3p9p71a9wGQglKS8vEtuUemnjMrJfzfBHeUc7yWjXfWIVYK3DwQpVg9ykYvLBrxXAeKaJeFDJ3pB2Vih9Aw1KeacwD7KECy3dORJntORWzoSk9qbwpu_n_h49DuOP3-A6tO9gySzcVsak0tgipyi-7_CLxqBplw</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Bhosale, Gauri</creator><creator>Sharpe, Jenny A.</creator><creator>Koh, Amanda</creator><creator>Kouli, Antonina</creator><creator>Szabadkai, Gyorgy</creator><creator>Duchen, Michael R.</creator><general>Elsevier B.V</general><general>Elsevier Pub. Co</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201706</creationdate><title>Pathological consequences of MICU1 mutations on mitochondrial calcium signalling and bioenergetics</title><author>Bhosale, Gauri ; Sharpe, Jenny A. ; Koh, Amanda ; Kouli, Antonina ; Szabadkai, Gyorgy ; Duchen, Michael R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-de3e6fae5b351e3fb52e94855bf0ff6bef40f5e4cf971f25cfc3999868d6b843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Calcium</topic><topic>Calcium Signaling</topic><topic>Calcium-Binding Proteins - genetics</topic><topic>Cation Transport Proteins - genetics</topic><topic>Cells, Cultured</topic><topic>Energy Metabolism</topic><topic>Humans</topic><topic>MICU1</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Membrane Transport Proteins - genetics</topic><topic>Mutation</topic><topic>PDH</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhosale, Gauri</creatorcontrib><creatorcontrib>Sharpe, Jenny A.</creatorcontrib><creatorcontrib>Koh, Amanda</creatorcontrib><creatorcontrib>Kouli, Antonina</creatorcontrib><creatorcontrib>Szabadkai, Gyorgy</creatorcontrib><creatorcontrib>Duchen, Michael R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochimica et biophysica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhosale, Gauri</au><au>Sharpe, Jenny A.</au><au>Koh, Amanda</au><au>Kouli, Antonina</au><au>Szabadkai, Gyorgy</au><au>Duchen, Michael R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pathological consequences of MICU1 mutations on mitochondrial calcium signalling and bioenergetics</atitle><jtitle>Biochimica et biophysica acta</jtitle><addtitle>Biochim Biophys Acta Mol Cell Res</addtitle><date>2017-06</date><risdate>2017</risdate><volume>1864</volume><issue>6</issue><spage>1009</spage><epage>1017</epage><pages>1009-1017</pages><issn>0167-4889</issn><issn>0006-3002</issn><eissn>1879-2596</eissn><eissn>1878-2434</eissn><abstract>Loss of function mutations of the protein MICU1, a regulator of mitochondrial Ca2+ uptake, cause a neuronal and muscular disorder characterised by impaired cognition, muscle weakness and an extrapyramidal motor disorder. We have shown previously that MICU1 mutations cause increased resting mitochondrial Ca2+ concentration ([Ca2+]m). We now explore the functional consequences of MICU1 mutations in patient derived fibroblasts in order to clarify the underlying pathophysiology of this disorder. We propose that deregulation of mitochondrial Ca2+ uptake through loss of MICU1 raises resting [Ca2+]m, initiating a futile Ca2+ cycle, whereby continuous mitochondrial Ca2+ influx is balanced by Ca2+ efflux through the sodium calcium exchanger (NLCXm). Thus, inhibition of NCLXm by CGP-37157 caused rapid mitochondrial Ca2+ accumulation in patient but not control cells. We suggest that increased NCLX activity will increase sodium/proton exchange, potentially undermining oxidative phosphorylation, although this is balanced by dephosphorylation and activation of pyruvate dehydrogenase (PDH) in response to the increased [Ca2+]m. Consistent with this model, while ATP content in patient derived or control fibroblasts was not different, ATP increased significantly in response to CGP-37157 in the patient but not the control cells. In addition, EMRE expression levels were altered in MICU1 patient cells compared to the controls. The MICU1 mutations were associated with mitochondrial fragmentation which we show is related to altered DRP1 phosphorylation. Thus, MICU1 serves as a signal–noise discriminator in mitochondrial calcium signalling, limiting the energetic costs of mitochondrial Ca2+ signalling which may undermine oxidative phosphorylation, especially in tissues with highly dynamic energetic demands. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
•Loss of MICU1 protein expression in human fibroblasts increases resting mitochondrial calcium concentration ([Ca2+]m).•The increased mitochondrial Ca2+ uptake causes a futile Ca2+ cycle in MICU1 deficient cells.•Increased [Ca2+]mactivates pyruvate dehydrogenase (PDH) by activating PDH phosphatase, consequently dephosphorylating PDH.•Loss of MICU1 leads to modifications of the MCU complex composition and mitochondrial fragmentation.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>28132899</pmid><doi>10.1016/j.bbamcr.2017.01.015</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-4889 |
ispartof | Biochimica et biophysica acta, 2017-06, Vol.1864 (6), p.1009-1017 |
issn | 0167-4889 0006-3002 1879-2596 1878-2434 |
language | eng |
recordid | cdi_proquest_miscellaneous_1862939457 |
source | MEDLINE; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals |
subjects | Calcium Calcium Signaling Calcium-Binding Proteins - genetics Cation Transport Proteins - genetics Cells, Cultured Energy Metabolism Humans MICU1 Mitochondria Mitochondria - metabolism Mitochondrial Membrane Transport Proteins - genetics Mutation PDH |
title | Pathological consequences of MICU1 mutations on mitochondrial calcium signalling and bioenergetics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A42%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pathological%20consequences%20of%20MICU1%20mutations%20on%20mitochondrial%20calcium%20signalling%20and%20bioenergetics&rft.jtitle=Biochimica%20et%20biophysica%20acta&rft.au=Bhosale,%20Gauri&rft.date=2017-06&rft.volume=1864&rft.issue=6&rft.spage=1009&rft.epage=1017&rft.pages=1009-1017&rft.issn=0167-4889&rft.eissn=1879-2596&rft_id=info:doi/10.1016/j.bbamcr.2017.01.015&rft_dat=%3Cproquest_pubme%3E1862939457%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1862939457&rft_id=info:pmid/28132899&rft_els_id=S016748891730023X&rfr_iscdi=true |