Nano-mechanical characterization of tension-sensitive helix bundles in talin rod

Tension-induced exposure of a cryptic signaling binding site is one of the most fundamental mechanisms in molecular mechanotransduction. Helix bundles in rod domains of talin, a tension-sensing protein at focal adhesions, unfurl under tension to expose cryptic vinculin binding sites. Although the di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2017-03, Vol.484 (2), p.372-377
Hauptverfasser: Maki, Koichiro, Nakao, Nobuhiko, Adachi, Taiji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 377
container_issue 2
container_start_page 372
container_title Biochemical and biophysical research communications
container_volume 484
creator Maki, Koichiro
Nakao, Nobuhiko
Adachi, Taiji
description Tension-induced exposure of a cryptic signaling binding site is one of the most fundamental mechanisms in molecular mechanotransduction. Helix bundles in rod domains of talin, a tension-sensing protein at focal adhesions, unfurl under tension to expose cryptic vinculin binding sites. Although the difference in their mechanical stabilities would determine which helix bundle is tension-sensitive, their respective mechanical behaviors under tension have not been characterized. In this study, we evaluated the mechanical behaviors of residues 486–654 and 754–889 of talin, which form helix bundles with low and high tension-sensitivity, by employing AFM nano-tensile testing. As a result, residues 754–889 exhibited lower unfolding energy for complete unfolding than residues 486–654. In addition, we found that residues 754–889 transition into intermediate conformations under lower tension than residues 486–654. Furthermore, residues 754–889 showed shorter persistence length in the intermediate conformation than residues 486–654, suggesting that residues 754–889 under tension exhibit separated α-helices, while residues 486–654 assume a compact conformation with inter-helix interactions. Therefore, we suggest that residues 754–889 of talin work as a tension-sensitive domain to recruit vinculin at the early stage of focal adhesion development, while residues 486–654 contribute to rather robust tension-sensitivity by recruiting vinculin under high tension. [Display omitted] •Nano-mechanical behaviors of tension-sensitive helix bundles in talin were tested.•Residues 754–889 formed less stable helix bundle than that of residues 486–654.•Residues 754–889 transited intermediate conformations under low tension.•Residues 754–889 showed smaller tensile stiffness than that of residues 486–654.
doi_str_mv 10.1016/j.bbrc.2017.01.127
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1862939332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006291X17301869</els_id><sourcerecordid>1862939332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-a63f15da6072693abc38d6548f260e11511f885bdaca38757d41e321bd00134b3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EouXxBzigHLkk7NqJk0hcEOIlIeAAEjfLsTeqqzQpdoqAX4-rFo5cdvYwM9J8jJ0gZAgoz-dZ03iTccAyA8yQlztsilBDyhHyXTYFAJnyGt8m7CCEOQBiLut9NuEVCqxEMWXPj7of0gWZme6d0V0SH6_NSN5969ENfTK0yUh9iG8a1jq6D0pm1LnPpFn1tqOQuD4ZdRevH-wR22t1F-h4q4fs9eb65eoufXi6vb-6fEhNgTCmWooWC6sllFzWQjdGVFYWedVyCYRYILZVVTRWGy2qsihtjiQ4NjauEHkjDtnZpnfph_cVhVEtXDDUdbqnYRUUVpLXohaCRyvfWI0fQvDUqqV3C-2_FIJak1RztSap1iQVoIokY-h0279qFmT_Ir_oouFiY6C48sORV8E46g1Z58mMyg7uv_4flfWEYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1862939332</pqid></control><display><type>article</type><title>Nano-mechanical characterization of tension-sensitive helix bundles in talin rod</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Maki, Koichiro ; Nakao, Nobuhiko ; Adachi, Taiji</creator><creatorcontrib>Maki, Koichiro ; Nakao, Nobuhiko ; Adachi, Taiji</creatorcontrib><description>Tension-induced exposure of a cryptic signaling binding site is one of the most fundamental mechanisms in molecular mechanotransduction. Helix bundles in rod domains of talin, a tension-sensing protein at focal adhesions, unfurl under tension to expose cryptic vinculin binding sites. Although the difference in their mechanical stabilities would determine which helix bundle is tension-sensitive, their respective mechanical behaviors under tension have not been characterized. In this study, we evaluated the mechanical behaviors of residues 486–654 and 754–889 of talin, which form helix bundles with low and high tension-sensitivity, by employing AFM nano-tensile testing. As a result, residues 754–889 exhibited lower unfolding energy for complete unfolding than residues 486–654. In addition, we found that residues 754–889 transition into intermediate conformations under lower tension than residues 486–654. Furthermore, residues 754–889 showed shorter persistence length in the intermediate conformation than residues 486–654, suggesting that residues 754–889 under tension exhibit separated α-helices, while residues 486–654 assume a compact conformation with inter-helix interactions. Therefore, we suggest that residues 754–889 of talin work as a tension-sensitive domain to recruit vinculin at the early stage of focal adhesion development, while residues 486–654 contribute to rather robust tension-sensitivity by recruiting vinculin under high tension. [Display omitted] •Nano-mechanical behaviors of tension-sensitive helix bundles in talin were tested.•Residues 754–889 formed less stable helix bundle than that of residues 486–654.•Residues 754–889 transited intermediate conformations under low tension.•Residues 754–889 showed smaller tensile stiffness than that of residues 486–654.</description><identifier>ISSN: 0006-291X</identifier><identifier>EISSN: 1090-2104</identifier><identifier>DOI: 10.1016/j.bbrc.2017.01.127</identifier><identifier>PMID: 28131835</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Atomic force microscopy (AFM) ; Helix bundle ; Mechanotransduction ; Microscopy, Atomic Force ; Nano-tensile testing ; Nanotechnology ; Protein Conformation ; Talin ; Talin - chemistry ; Tensile Strength ; Vinculin</subject><ispartof>Biochemical and biophysical research communications, 2017-03, Vol.484 (2), p.372-377</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-a63f15da6072693abc38d6548f260e11511f885bdaca38757d41e321bd00134b3</citedby><cites>FETCH-LOGICAL-c510t-a63f15da6072693abc38d6548f260e11511f885bdaca38757d41e321bd00134b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006291X17301869$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28131835$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maki, Koichiro</creatorcontrib><creatorcontrib>Nakao, Nobuhiko</creatorcontrib><creatorcontrib>Adachi, Taiji</creatorcontrib><title>Nano-mechanical characterization of tension-sensitive helix bundles in talin rod</title><title>Biochemical and biophysical research communications</title><addtitle>Biochem Biophys Res Commun</addtitle><description>Tension-induced exposure of a cryptic signaling binding site is one of the most fundamental mechanisms in molecular mechanotransduction. Helix bundles in rod domains of talin, a tension-sensing protein at focal adhesions, unfurl under tension to expose cryptic vinculin binding sites. Although the difference in their mechanical stabilities would determine which helix bundle is tension-sensitive, their respective mechanical behaviors under tension have not been characterized. In this study, we evaluated the mechanical behaviors of residues 486–654 and 754–889 of talin, which form helix bundles with low and high tension-sensitivity, by employing AFM nano-tensile testing. As a result, residues 754–889 exhibited lower unfolding energy for complete unfolding than residues 486–654. In addition, we found that residues 754–889 transition into intermediate conformations under lower tension than residues 486–654. Furthermore, residues 754–889 showed shorter persistence length in the intermediate conformation than residues 486–654, suggesting that residues 754–889 under tension exhibit separated α-helices, while residues 486–654 assume a compact conformation with inter-helix interactions. Therefore, we suggest that residues 754–889 of talin work as a tension-sensitive domain to recruit vinculin at the early stage of focal adhesion development, while residues 486–654 contribute to rather robust tension-sensitivity by recruiting vinculin under high tension. [Display omitted] •Nano-mechanical behaviors of tension-sensitive helix bundles in talin were tested.•Residues 754–889 formed less stable helix bundle than that of residues 486–654.•Residues 754–889 transited intermediate conformations under low tension.•Residues 754–889 showed smaller tensile stiffness than that of residues 486–654.</description><subject>Atomic force microscopy (AFM)</subject><subject>Helix bundle</subject><subject>Mechanotransduction</subject><subject>Microscopy, Atomic Force</subject><subject>Nano-tensile testing</subject><subject>Nanotechnology</subject><subject>Protein Conformation</subject><subject>Talin</subject><subject>Talin - chemistry</subject><subject>Tensile Strength</subject><subject>Vinculin</subject><issn>0006-291X</issn><issn>1090-2104</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtPwzAQhC0EouXxBzigHLkk7NqJk0hcEOIlIeAAEjfLsTeqqzQpdoqAX4-rFo5cdvYwM9J8jJ0gZAgoz-dZ03iTccAyA8yQlztsilBDyhHyXTYFAJnyGt8m7CCEOQBiLut9NuEVCqxEMWXPj7of0gWZme6d0V0SH6_NSN5969ENfTK0yUh9iG8a1jq6D0pm1LnPpFn1tqOQuD4ZdRevH-wR22t1F-h4q4fs9eb65eoufXi6vb-6fEhNgTCmWooWC6sllFzWQjdGVFYWedVyCYRYILZVVTRWGy2qsihtjiQ4NjauEHkjDtnZpnfph_cVhVEtXDDUdbqnYRUUVpLXohaCRyvfWI0fQvDUqqV3C-2_FIJak1RztSap1iQVoIokY-h0279qFmT_Ir_oouFiY6C48sORV8E46g1Z58mMyg7uv_4flfWEYg</recordid><startdate>20170304</startdate><enddate>20170304</enddate><creator>Maki, Koichiro</creator><creator>Nakao, Nobuhiko</creator><creator>Adachi, Taiji</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170304</creationdate><title>Nano-mechanical characterization of tension-sensitive helix bundles in talin rod</title><author>Maki, Koichiro ; Nakao, Nobuhiko ; Adachi, Taiji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-a63f15da6072693abc38d6548f260e11511f885bdaca38757d41e321bd00134b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Atomic force microscopy (AFM)</topic><topic>Helix bundle</topic><topic>Mechanotransduction</topic><topic>Microscopy, Atomic Force</topic><topic>Nano-tensile testing</topic><topic>Nanotechnology</topic><topic>Protein Conformation</topic><topic>Talin</topic><topic>Talin - chemistry</topic><topic>Tensile Strength</topic><topic>Vinculin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maki, Koichiro</creatorcontrib><creatorcontrib>Nakao, Nobuhiko</creatorcontrib><creatorcontrib>Adachi, Taiji</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemical and biophysical research communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maki, Koichiro</au><au>Nakao, Nobuhiko</au><au>Adachi, Taiji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nano-mechanical characterization of tension-sensitive helix bundles in talin rod</atitle><jtitle>Biochemical and biophysical research communications</jtitle><addtitle>Biochem Biophys Res Commun</addtitle><date>2017-03-04</date><risdate>2017</risdate><volume>484</volume><issue>2</issue><spage>372</spage><epage>377</epage><pages>372-377</pages><issn>0006-291X</issn><eissn>1090-2104</eissn><abstract>Tension-induced exposure of a cryptic signaling binding site is one of the most fundamental mechanisms in molecular mechanotransduction. Helix bundles in rod domains of talin, a tension-sensing protein at focal adhesions, unfurl under tension to expose cryptic vinculin binding sites. Although the difference in their mechanical stabilities would determine which helix bundle is tension-sensitive, their respective mechanical behaviors under tension have not been characterized. In this study, we evaluated the mechanical behaviors of residues 486–654 and 754–889 of talin, which form helix bundles with low and high tension-sensitivity, by employing AFM nano-tensile testing. As a result, residues 754–889 exhibited lower unfolding energy for complete unfolding than residues 486–654. In addition, we found that residues 754–889 transition into intermediate conformations under lower tension than residues 486–654. Furthermore, residues 754–889 showed shorter persistence length in the intermediate conformation than residues 486–654, suggesting that residues 754–889 under tension exhibit separated α-helices, while residues 486–654 assume a compact conformation with inter-helix interactions. Therefore, we suggest that residues 754–889 of talin work as a tension-sensitive domain to recruit vinculin at the early stage of focal adhesion development, while residues 486–654 contribute to rather robust tension-sensitivity by recruiting vinculin under high tension. [Display omitted] •Nano-mechanical behaviors of tension-sensitive helix bundles in talin were tested.•Residues 754–889 formed less stable helix bundle than that of residues 486–654.•Residues 754–889 transited intermediate conformations under low tension.•Residues 754–889 showed smaller tensile stiffness than that of residues 486–654.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28131835</pmid><doi>10.1016/j.bbrc.2017.01.127</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-291X
ispartof Biochemical and biophysical research communications, 2017-03, Vol.484 (2), p.372-377
issn 0006-291X
1090-2104
language eng
recordid cdi_proquest_miscellaneous_1862939332
source MEDLINE; Elsevier ScienceDirect Journals
subjects Atomic force microscopy (AFM)
Helix bundle
Mechanotransduction
Microscopy, Atomic Force
Nano-tensile testing
Nanotechnology
Protein Conformation
Talin
Talin - chemistry
Tensile Strength
Vinculin
title Nano-mechanical characterization of tension-sensitive helix bundles in talin rod
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A50%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nano-mechanical%20characterization%20of%20tension-sensitive%20helix%20bundles%20in%20talin%20rod&rft.jtitle=Biochemical%20and%20biophysical%20research%20communications&rft.au=Maki,%20Koichiro&rft.date=2017-03-04&rft.volume=484&rft.issue=2&rft.spage=372&rft.epage=377&rft.pages=372-377&rft.issn=0006-291X&rft.eissn=1090-2104&rft_id=info:doi/10.1016/j.bbrc.2017.01.127&rft_dat=%3Cproquest_cross%3E1862939332%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1862939332&rft_id=info:pmid/28131835&rft_els_id=S0006291X17301869&rfr_iscdi=true