Nano-mechanical characterization of tension-sensitive helix bundles in talin rod
Tension-induced exposure of a cryptic signaling binding site is one of the most fundamental mechanisms in molecular mechanotransduction. Helix bundles in rod domains of talin, a tension-sensing protein at focal adhesions, unfurl under tension to expose cryptic vinculin binding sites. Although the di...
Gespeichert in:
Veröffentlicht in: | Biochemical and biophysical research communications 2017-03, Vol.484 (2), p.372-377 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 377 |
---|---|
container_issue | 2 |
container_start_page | 372 |
container_title | Biochemical and biophysical research communications |
container_volume | 484 |
creator | Maki, Koichiro Nakao, Nobuhiko Adachi, Taiji |
description | Tension-induced exposure of a cryptic signaling binding site is one of the most fundamental mechanisms in molecular mechanotransduction. Helix bundles in rod domains of talin, a tension-sensing protein at focal adhesions, unfurl under tension to expose cryptic vinculin binding sites. Although the difference in their mechanical stabilities would determine which helix bundle is tension-sensitive, their respective mechanical behaviors under tension have not been characterized. In this study, we evaluated the mechanical behaviors of residues 486–654 and 754–889 of talin, which form helix bundles with low and high tension-sensitivity, by employing AFM nano-tensile testing. As a result, residues 754–889 exhibited lower unfolding energy for complete unfolding than residues 486–654. In addition, we found that residues 754–889 transition into intermediate conformations under lower tension than residues 486–654. Furthermore, residues 754–889 showed shorter persistence length in the intermediate conformation than residues 486–654, suggesting that residues 754–889 under tension exhibit separated α-helices, while residues 486–654 assume a compact conformation with inter-helix interactions. Therefore, we suggest that residues 754–889 of talin work as a tension-sensitive domain to recruit vinculin at the early stage of focal adhesion development, while residues 486–654 contribute to rather robust tension-sensitivity by recruiting vinculin under high tension.
[Display omitted]
•Nano-mechanical behaviors of tension-sensitive helix bundles in talin were tested.•Residues 754–889 formed less stable helix bundle than that of residues 486–654.•Residues 754–889 transited intermediate conformations under low tension.•Residues 754–889 showed smaller tensile stiffness than that of residues 486–654. |
doi_str_mv | 10.1016/j.bbrc.2017.01.127 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1862939332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006291X17301869</els_id><sourcerecordid>1862939332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-a63f15da6072693abc38d6548f260e11511f885bdaca38757d41e321bd00134b3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EouXxBzigHLkk7NqJk0hcEOIlIeAAEjfLsTeqqzQpdoqAX4-rFo5cdvYwM9J8jJ0gZAgoz-dZ03iTccAyA8yQlztsilBDyhHyXTYFAJnyGt8m7CCEOQBiLut9NuEVCqxEMWXPj7of0gWZme6d0V0SH6_NSN5969ENfTK0yUh9iG8a1jq6D0pm1LnPpFn1tqOQuD4ZdRevH-wR22t1F-h4q4fs9eb65eoufXi6vb-6fEhNgTCmWooWC6sllFzWQjdGVFYWedVyCYRYILZVVTRWGy2qsihtjiQ4NjauEHkjDtnZpnfph_cVhVEtXDDUdbqnYRUUVpLXohaCRyvfWI0fQvDUqqV3C-2_FIJak1RztSap1iQVoIokY-h0279qFmT_Ir_oouFiY6C48sORV8E46g1Z58mMyg7uv_4flfWEYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1862939332</pqid></control><display><type>article</type><title>Nano-mechanical characterization of tension-sensitive helix bundles in talin rod</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Maki, Koichiro ; Nakao, Nobuhiko ; Adachi, Taiji</creator><creatorcontrib>Maki, Koichiro ; Nakao, Nobuhiko ; Adachi, Taiji</creatorcontrib><description>Tension-induced exposure of a cryptic signaling binding site is one of the most fundamental mechanisms in molecular mechanotransduction. Helix bundles in rod domains of talin, a tension-sensing protein at focal adhesions, unfurl under tension to expose cryptic vinculin binding sites. Although the difference in their mechanical stabilities would determine which helix bundle is tension-sensitive, their respective mechanical behaviors under tension have not been characterized. In this study, we evaluated the mechanical behaviors of residues 486–654 and 754–889 of talin, which form helix bundles with low and high tension-sensitivity, by employing AFM nano-tensile testing. As a result, residues 754–889 exhibited lower unfolding energy for complete unfolding than residues 486–654. In addition, we found that residues 754–889 transition into intermediate conformations under lower tension than residues 486–654. Furthermore, residues 754–889 showed shorter persistence length in the intermediate conformation than residues 486–654, suggesting that residues 754–889 under tension exhibit separated α-helices, while residues 486–654 assume a compact conformation with inter-helix interactions. Therefore, we suggest that residues 754–889 of talin work as a tension-sensitive domain to recruit vinculin at the early stage of focal adhesion development, while residues 486–654 contribute to rather robust tension-sensitivity by recruiting vinculin under high tension.
[Display omitted]
•Nano-mechanical behaviors of tension-sensitive helix bundles in talin were tested.•Residues 754–889 formed less stable helix bundle than that of residues 486–654.•Residues 754–889 transited intermediate conformations under low tension.•Residues 754–889 showed smaller tensile stiffness than that of residues 486–654.</description><identifier>ISSN: 0006-291X</identifier><identifier>EISSN: 1090-2104</identifier><identifier>DOI: 10.1016/j.bbrc.2017.01.127</identifier><identifier>PMID: 28131835</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Atomic force microscopy (AFM) ; Helix bundle ; Mechanotransduction ; Microscopy, Atomic Force ; Nano-tensile testing ; Nanotechnology ; Protein Conformation ; Talin ; Talin - chemistry ; Tensile Strength ; Vinculin</subject><ispartof>Biochemical and biophysical research communications, 2017-03, Vol.484 (2), p.372-377</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-a63f15da6072693abc38d6548f260e11511f885bdaca38757d41e321bd00134b3</citedby><cites>FETCH-LOGICAL-c510t-a63f15da6072693abc38d6548f260e11511f885bdaca38757d41e321bd00134b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006291X17301869$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28131835$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maki, Koichiro</creatorcontrib><creatorcontrib>Nakao, Nobuhiko</creatorcontrib><creatorcontrib>Adachi, Taiji</creatorcontrib><title>Nano-mechanical characterization of tension-sensitive helix bundles in talin rod</title><title>Biochemical and biophysical research communications</title><addtitle>Biochem Biophys Res Commun</addtitle><description>Tension-induced exposure of a cryptic signaling binding site is one of the most fundamental mechanisms in molecular mechanotransduction. Helix bundles in rod domains of talin, a tension-sensing protein at focal adhesions, unfurl under tension to expose cryptic vinculin binding sites. Although the difference in their mechanical stabilities would determine which helix bundle is tension-sensitive, their respective mechanical behaviors under tension have not been characterized. In this study, we evaluated the mechanical behaviors of residues 486–654 and 754–889 of talin, which form helix bundles with low and high tension-sensitivity, by employing AFM nano-tensile testing. As a result, residues 754–889 exhibited lower unfolding energy for complete unfolding than residues 486–654. In addition, we found that residues 754–889 transition into intermediate conformations under lower tension than residues 486–654. Furthermore, residues 754–889 showed shorter persistence length in the intermediate conformation than residues 486–654, suggesting that residues 754–889 under tension exhibit separated α-helices, while residues 486–654 assume a compact conformation with inter-helix interactions. Therefore, we suggest that residues 754–889 of talin work as a tension-sensitive domain to recruit vinculin at the early stage of focal adhesion development, while residues 486–654 contribute to rather robust tension-sensitivity by recruiting vinculin under high tension.
[Display omitted]
•Nano-mechanical behaviors of tension-sensitive helix bundles in talin were tested.•Residues 754–889 formed less stable helix bundle than that of residues 486–654.•Residues 754–889 transited intermediate conformations under low tension.•Residues 754–889 showed smaller tensile stiffness than that of residues 486–654.</description><subject>Atomic force microscopy (AFM)</subject><subject>Helix bundle</subject><subject>Mechanotransduction</subject><subject>Microscopy, Atomic Force</subject><subject>Nano-tensile testing</subject><subject>Nanotechnology</subject><subject>Protein Conformation</subject><subject>Talin</subject><subject>Talin - chemistry</subject><subject>Tensile Strength</subject><subject>Vinculin</subject><issn>0006-291X</issn><issn>1090-2104</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtPwzAQhC0EouXxBzigHLkk7NqJk0hcEOIlIeAAEjfLsTeqqzQpdoqAX4-rFo5cdvYwM9J8jJ0gZAgoz-dZ03iTccAyA8yQlztsilBDyhHyXTYFAJnyGt8m7CCEOQBiLut9NuEVCqxEMWXPj7of0gWZme6d0V0SH6_NSN5969ENfTK0yUh9iG8a1jq6D0pm1LnPpFn1tqOQuD4ZdRevH-wR22t1F-h4q4fs9eb65eoufXi6vb-6fEhNgTCmWooWC6sllFzWQjdGVFYWedVyCYRYILZVVTRWGy2qsihtjiQ4NjauEHkjDtnZpnfph_cVhVEtXDDUdbqnYRUUVpLXohaCRyvfWI0fQvDUqqV3C-2_FIJak1RztSap1iQVoIokY-h0279qFmT_Ir_oouFiY6C48sORV8E46g1Z58mMyg7uv_4flfWEYg</recordid><startdate>20170304</startdate><enddate>20170304</enddate><creator>Maki, Koichiro</creator><creator>Nakao, Nobuhiko</creator><creator>Adachi, Taiji</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170304</creationdate><title>Nano-mechanical characterization of tension-sensitive helix bundles in talin rod</title><author>Maki, Koichiro ; Nakao, Nobuhiko ; Adachi, Taiji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-a63f15da6072693abc38d6548f260e11511f885bdaca38757d41e321bd00134b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Atomic force microscopy (AFM)</topic><topic>Helix bundle</topic><topic>Mechanotransduction</topic><topic>Microscopy, Atomic Force</topic><topic>Nano-tensile testing</topic><topic>Nanotechnology</topic><topic>Protein Conformation</topic><topic>Talin</topic><topic>Talin - chemistry</topic><topic>Tensile Strength</topic><topic>Vinculin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maki, Koichiro</creatorcontrib><creatorcontrib>Nakao, Nobuhiko</creatorcontrib><creatorcontrib>Adachi, Taiji</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemical and biophysical research communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maki, Koichiro</au><au>Nakao, Nobuhiko</au><au>Adachi, Taiji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nano-mechanical characterization of tension-sensitive helix bundles in talin rod</atitle><jtitle>Biochemical and biophysical research communications</jtitle><addtitle>Biochem Biophys Res Commun</addtitle><date>2017-03-04</date><risdate>2017</risdate><volume>484</volume><issue>2</issue><spage>372</spage><epage>377</epage><pages>372-377</pages><issn>0006-291X</issn><eissn>1090-2104</eissn><abstract>Tension-induced exposure of a cryptic signaling binding site is one of the most fundamental mechanisms in molecular mechanotransduction. Helix bundles in rod domains of talin, a tension-sensing protein at focal adhesions, unfurl under tension to expose cryptic vinculin binding sites. Although the difference in their mechanical stabilities would determine which helix bundle is tension-sensitive, their respective mechanical behaviors under tension have not been characterized. In this study, we evaluated the mechanical behaviors of residues 486–654 and 754–889 of talin, which form helix bundles with low and high tension-sensitivity, by employing AFM nano-tensile testing. As a result, residues 754–889 exhibited lower unfolding energy for complete unfolding than residues 486–654. In addition, we found that residues 754–889 transition into intermediate conformations under lower tension than residues 486–654. Furthermore, residues 754–889 showed shorter persistence length in the intermediate conformation than residues 486–654, suggesting that residues 754–889 under tension exhibit separated α-helices, while residues 486–654 assume a compact conformation with inter-helix interactions. Therefore, we suggest that residues 754–889 of talin work as a tension-sensitive domain to recruit vinculin at the early stage of focal adhesion development, while residues 486–654 contribute to rather robust tension-sensitivity by recruiting vinculin under high tension.
[Display omitted]
•Nano-mechanical behaviors of tension-sensitive helix bundles in talin were tested.•Residues 754–889 formed less stable helix bundle than that of residues 486–654.•Residues 754–889 transited intermediate conformations under low tension.•Residues 754–889 showed smaller tensile stiffness than that of residues 486–654.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28131835</pmid><doi>10.1016/j.bbrc.2017.01.127</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-291X |
ispartof | Biochemical and biophysical research communications, 2017-03, Vol.484 (2), p.372-377 |
issn | 0006-291X 1090-2104 |
language | eng |
recordid | cdi_proquest_miscellaneous_1862939332 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Atomic force microscopy (AFM) Helix bundle Mechanotransduction Microscopy, Atomic Force Nano-tensile testing Nanotechnology Protein Conformation Talin Talin - chemistry Tensile Strength Vinculin |
title | Nano-mechanical characterization of tension-sensitive helix bundles in talin rod |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A50%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nano-mechanical%20characterization%20of%20tension-sensitive%20helix%20bundles%20in%20talin%20rod&rft.jtitle=Biochemical%20and%20biophysical%20research%20communications&rft.au=Maki,%20Koichiro&rft.date=2017-03-04&rft.volume=484&rft.issue=2&rft.spage=372&rft.epage=377&rft.pages=372-377&rft.issn=0006-291X&rft.eissn=1090-2104&rft_id=info:doi/10.1016/j.bbrc.2017.01.127&rft_dat=%3Cproquest_cross%3E1862939332%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1862939332&rft_id=info:pmid/28131835&rft_els_id=S0006291X17301869&rfr_iscdi=true |