Colloidal Stability in Asymmetric Electrolytes: Modifications of the Schulze–Hardy Rule

The Schulze–Hardy rule suggests a strong dependence of the critical coagulation concentration (CCC) on the ionic valence. This rule is addressed theoretically and confronted with recent experimental results. The commonly presented derivation of this rule assumes symmetric electrolytes and highly cha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2017-02, Vol.33 (7), p.1695-1704
Hauptverfasser: Trefalt, Gregor, Szilagyi, Istvan, Téllez, Gabriel, Borkovec, Michal
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1704
container_issue 7
container_start_page 1695
container_title Langmuir
container_volume 33
creator Trefalt, Gregor
Szilagyi, Istvan
Téllez, Gabriel
Borkovec, Michal
description The Schulze–Hardy rule suggests a strong dependence of the critical coagulation concentration (CCC) on the ionic valence. This rule is addressed theoretically and confronted with recent experimental results. The commonly presented derivation of this rule assumes symmetric electrolytes and highly charged particles. Both assumptions are incorrect. Symmetric electrolytes containing multivalent ions are hardly soluble, and experiments are normally carried out with the well-soluble salts of asymmetric electrolytes containing monovalent and multivalent ions. In this situation, however, the behavior is completely different whether the multivalent ions represent the counterions or co-ions. When these ions represent the counterions, meaning that the multivalent ions have the opposite sign than the charge of the particle, they adsorb strongly to the particles. Thereby, they progressively reduce the magnitude of the surface charge with increasing valence. In fact, this dependence of the charge density on the counterion valence is mainly responsible for the decrease of the CCC with the valence. In the co-ion case, where the multivalent ions have the same sign as the charge of the particle, the multivalent ions are repelled from the particles, and the surfaces remain highly charged. In this case, the inverse Schulze–Hardy rule normally applies, whereby the CCC varies inversely proportional to the co-ion valence.
doi_str_mv 10.1021/acs.langmuir.6b04464
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1862766248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1862766248</sourcerecordid><originalsourceid>FETCH-LOGICAL-a451t-38b4fd7e6728dfcbf318569c638b5ae0ade03cae8bf89fb0760d02d89d7c0a113</originalsourceid><addsrcrecordid>eNp9kLtOxDAQRS0EgmXhDxBySZPFdhzboUMrYJFASDwKqsjxA4ycNdhOESr-gT_kSwjahZJqijn3juYAcIDRDCOCj6VKMy-XT13v4oy1iFJGN8AEVwQVlSB8E0wQp2XBKSt3wG5KLwihuqT1NtghAhNeMzwBj_PgfXBaeniXZeu8ywN0S3iahq4zOToFz7xROQY_ZJNO4HXQzjolswvLBIOF-dnAO_Xc-3fz9fG5kFEP8Lb3Zg9sWemT2V_PKXg4P7ufL4qrm4vL-elVIWmFc1GKllrNDeNEaKtaW2JRsVqxcVFJg6Q2qFTSiNaK2raIM6QR0aLWXCGJcTkFR6ve1xjeepNy07mkjB_dmNCnBgtGOGOEihGlK1TFkFI0tnmNrpNxaDBqfqQ2o9TmV2qzljrGDtcX-rYz-i_0a3EE0Ar4ib-EPi7Hh__v_AZwqole</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1862766248</pqid></control><display><type>article</type><title>Colloidal Stability in Asymmetric Electrolytes: Modifications of the Schulze–Hardy Rule</title><source>ACS Publications</source><creator>Trefalt, Gregor ; Szilagyi, Istvan ; Téllez, Gabriel ; Borkovec, Michal</creator><creatorcontrib>Trefalt, Gregor ; Szilagyi, Istvan ; Téllez, Gabriel ; Borkovec, Michal</creatorcontrib><description>The Schulze–Hardy rule suggests a strong dependence of the critical coagulation concentration (CCC) on the ionic valence. This rule is addressed theoretically and confronted with recent experimental results. The commonly presented derivation of this rule assumes symmetric electrolytes and highly charged particles. Both assumptions are incorrect. Symmetric electrolytes containing multivalent ions are hardly soluble, and experiments are normally carried out with the well-soluble salts of asymmetric electrolytes containing monovalent and multivalent ions. In this situation, however, the behavior is completely different whether the multivalent ions represent the counterions or co-ions. When these ions represent the counterions, meaning that the multivalent ions have the opposite sign than the charge of the particle, they adsorb strongly to the particles. Thereby, they progressively reduce the magnitude of the surface charge with increasing valence. In fact, this dependence of the charge density on the counterion valence is mainly responsible for the decrease of the CCC with the valence. In the co-ion case, where the multivalent ions have the same sign as the charge of the particle, the multivalent ions are repelled from the particles, and the surfaces remain highly charged. In this case, the inverse Schulze–Hardy rule normally applies, whereby the CCC varies inversely proportional to the co-ion valence.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.6b04464</identifier><identifier>PMID: 28127961</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Langmuir, 2017-02, Vol.33 (7), p.1695-1704</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a451t-38b4fd7e6728dfcbf318569c638b5ae0ade03cae8bf89fb0760d02d89d7c0a113</citedby><cites>FETCH-LOGICAL-a451t-38b4fd7e6728dfcbf318569c638b5ae0ade03cae8bf89fb0760d02d89d7c0a113</cites><orcidid>0000-0002-1114-4865 ; 0000-0001-7289-0979</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.6b04464$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.6b04464$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28127961$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Trefalt, Gregor</creatorcontrib><creatorcontrib>Szilagyi, Istvan</creatorcontrib><creatorcontrib>Téllez, Gabriel</creatorcontrib><creatorcontrib>Borkovec, Michal</creatorcontrib><title>Colloidal Stability in Asymmetric Electrolytes: Modifications of the Schulze–Hardy Rule</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>The Schulze–Hardy rule suggests a strong dependence of the critical coagulation concentration (CCC) on the ionic valence. This rule is addressed theoretically and confronted with recent experimental results. The commonly presented derivation of this rule assumes symmetric electrolytes and highly charged particles. Both assumptions are incorrect. Symmetric electrolytes containing multivalent ions are hardly soluble, and experiments are normally carried out with the well-soluble salts of asymmetric electrolytes containing monovalent and multivalent ions. In this situation, however, the behavior is completely different whether the multivalent ions represent the counterions or co-ions. When these ions represent the counterions, meaning that the multivalent ions have the opposite sign than the charge of the particle, they adsorb strongly to the particles. Thereby, they progressively reduce the magnitude of the surface charge with increasing valence. In fact, this dependence of the charge density on the counterion valence is mainly responsible for the decrease of the CCC with the valence. In the co-ion case, where the multivalent ions have the same sign as the charge of the particle, the multivalent ions are repelled from the particles, and the surfaces remain highly charged. In this case, the inverse Schulze–Hardy rule normally applies, whereby the CCC varies inversely proportional to the co-ion valence.</description><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOxDAQRS0EgmXhDxBySZPFdhzboUMrYJFASDwKqsjxA4ycNdhOESr-gT_kSwjahZJqijn3juYAcIDRDCOCj6VKMy-XT13v4oy1iFJGN8AEVwQVlSB8E0wQp2XBKSt3wG5KLwihuqT1NtghAhNeMzwBj_PgfXBaeniXZeu8ywN0S3iahq4zOToFz7xROQY_ZJNO4HXQzjolswvLBIOF-dnAO_Xc-3fz9fG5kFEP8Lb3Zg9sWemT2V_PKXg4P7ufL4qrm4vL-elVIWmFc1GKllrNDeNEaKtaW2JRsVqxcVFJg6Q2qFTSiNaK2raIM6QR0aLWXCGJcTkFR6ve1xjeepNy07mkjB_dmNCnBgtGOGOEihGlK1TFkFI0tnmNrpNxaDBqfqQ2o9TmV2qzljrGDtcX-rYz-i_0a3EE0Ar4ib-EPi7Hh__v_AZwqole</recordid><startdate>20170221</startdate><enddate>20170221</enddate><creator>Trefalt, Gregor</creator><creator>Szilagyi, Istvan</creator><creator>Téllez, Gabriel</creator><creator>Borkovec, Michal</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1114-4865</orcidid><orcidid>https://orcid.org/0000-0001-7289-0979</orcidid></search><sort><creationdate>20170221</creationdate><title>Colloidal Stability in Asymmetric Electrolytes: Modifications of the Schulze–Hardy Rule</title><author>Trefalt, Gregor ; Szilagyi, Istvan ; Téllez, Gabriel ; Borkovec, Michal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a451t-38b4fd7e6728dfcbf318569c638b5ae0ade03cae8bf89fb0760d02d89d7c0a113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trefalt, Gregor</creatorcontrib><creatorcontrib>Szilagyi, Istvan</creatorcontrib><creatorcontrib>Téllez, Gabriel</creatorcontrib><creatorcontrib>Borkovec, Michal</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trefalt, Gregor</au><au>Szilagyi, Istvan</au><au>Téllez, Gabriel</au><au>Borkovec, Michal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Colloidal Stability in Asymmetric Electrolytes: Modifications of the Schulze–Hardy Rule</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2017-02-21</date><risdate>2017</risdate><volume>33</volume><issue>7</issue><spage>1695</spage><epage>1704</epage><pages>1695-1704</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>The Schulze–Hardy rule suggests a strong dependence of the critical coagulation concentration (CCC) on the ionic valence. This rule is addressed theoretically and confronted with recent experimental results. The commonly presented derivation of this rule assumes symmetric electrolytes and highly charged particles. Both assumptions are incorrect. Symmetric electrolytes containing multivalent ions are hardly soluble, and experiments are normally carried out with the well-soluble salts of asymmetric electrolytes containing monovalent and multivalent ions. In this situation, however, the behavior is completely different whether the multivalent ions represent the counterions or co-ions. When these ions represent the counterions, meaning that the multivalent ions have the opposite sign than the charge of the particle, they adsorb strongly to the particles. Thereby, they progressively reduce the magnitude of the surface charge with increasing valence. In fact, this dependence of the charge density on the counterion valence is mainly responsible for the decrease of the CCC with the valence. In the co-ion case, where the multivalent ions have the same sign as the charge of the particle, the multivalent ions are repelled from the particles, and the surfaces remain highly charged. In this case, the inverse Schulze–Hardy rule normally applies, whereby the CCC varies inversely proportional to the co-ion valence.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28127961</pmid><doi>10.1021/acs.langmuir.6b04464</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1114-4865</orcidid><orcidid>https://orcid.org/0000-0001-7289-0979</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2017-02, Vol.33 (7), p.1695-1704
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_1862766248
source ACS Publications
title Colloidal Stability in Asymmetric Electrolytes: Modifications of the Schulze–Hardy Rule
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A22%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Colloidal%20Stability%20in%20Asymmetric%20Electrolytes:%20Modifications%20of%20the%20Schulze%E2%80%93Hardy%20Rule&rft.jtitle=Langmuir&rft.au=Trefalt,%20Gregor&rft.date=2017-02-21&rft.volume=33&rft.issue=7&rft.spage=1695&rft.epage=1704&rft.pages=1695-1704&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.6b04464&rft_dat=%3Cproquest_cross%3E1862766248%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1862766248&rft_id=info:pmid/28127961&rfr_iscdi=true