Guiding Neuronal Growth with Light
Control over neuronal growth is a fundamental objective in neuroscience, cell biology, developmental biology, biophysics, and biomedicine and is particularly important for the formation of neural circuits in vitro, as well as nerve regeneration in vivo [Zeck, G. & Fromherz, P. (2001) Proc. Natl....
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2002-12, Vol.99 (25), p.16024-16028 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16028 |
---|---|
container_issue | 25 |
container_start_page | 16024 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 99 |
creator | Ehrlicher, A. Betz, T. Stuhrmann, B. Koch, D. Milner, V. Raizen, M. G. Käs, J. |
description | Control over neuronal growth is a fundamental objective in neuroscience, cell biology, developmental biology, biophysics, and biomedicine and is particularly important for the formation of neural circuits in vitro, as well as nerve regeneration in vivo [Zeck, G. & Fromherz, P. (2001) Proc. Natl. Acad. Sci. USA 98, 10457-10462]. We have shown experimentally that we can use weak optical forces to guide the direction taken by the leading edge, or growth cone, of a nerve cell. In actively extending growth cones, a laser spot is placed in front of a specific area of the nerve's leading edge, enhancing growth into the beam focus and resulting in guided neuronal turns as well as enhanced growth. The power of our laser is chosen so that the resulting gradient forces are sufficiently powerful to bias the actin polymerization-driven lamellipodia extension, but too weak to hold and move the growth cone. We are therefore using light to control a natural biological process, in sharp contrast to the established technique of optical tweezers [Ashkin, A. (1970) Phys. Rev. Lett. 24, 156-159; Ashkin, A. & Dziedzic, J. M. (1987) Science 235, 1517-1520], which uses large optical forces to manipulate entire structures. Our results therefore open an avenue to controlling neuronal growth in vitro and in vivo with a simple, noncontact technique. |
doi_str_mv | 10.1073/pnas.252631899 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_18625760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3073901</jstor_id><sourcerecordid>3073901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-fa075c24721425a97e9490585a2d2331e922df0307664cf8a090165f6a6bccf73</originalsourceid><addsrcrecordid>eNqFkb1PG0EQxVcRKDiElioKlguU5pzZ2duvggKh4CBZSZPUq-W8Z591vnV27zD89-zJxkAKaGaK-b3Rm3mEnFIYU5Ds-7qxcYwcBaNK6w9kQEHTTOQaDsgAAGWmcsyPyKcYlwCguYKP5IhizoWSekBGk66aVc18-Mt1wTe2Hk6C37SL4aZKZVrNF-1ncljaOrqTXT8mf69__Ln6mU1_T26uLqdZwZG2WWlB8gJziTRHbrV0OrngilucIWPUacRZCQykEHlRKgsaqOClsOK2KErJjsnFdu-6u125WeGaNtjarEO1suHBeFuZ15OmWpi5vzOUKc5V0p_v9MH_61xszaqKhatr2zjfRSNRciH1-yBVArkUkMDRf-DSdyE9KRqEdCUq6G2Pt1ARfIzBlXvHFEyfkekzMvuMkuDryzuf8V0oCTjbAb3waax12mGoAMwT8e1twpRdXbfuvk3oly26jK0PezbFwNL_2SMWu6xx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201422807</pqid></control><display><type>article</type><title>Guiding Neuronal Growth with Light</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ehrlicher, A. ; Betz, T. ; Stuhrmann, B. ; Koch, D. ; Milner, V. ; Raizen, M. G. ; Käs, J.</creator><creatorcontrib>Ehrlicher, A. ; Betz, T. ; Stuhrmann, B. ; Koch, D. ; Milner, V. ; Raizen, M. G. ; Käs, J.</creatorcontrib><description>Control over neuronal growth is a fundamental objective in neuroscience, cell biology, developmental biology, biophysics, and biomedicine and is particularly important for the formation of neural circuits in vitro, as well as nerve regeneration in vivo [Zeck, G. & Fromherz, P. (2001) Proc. Natl. Acad. Sci. USA 98, 10457-10462]. We have shown experimentally that we can use weak optical forces to guide the direction taken by the leading edge, or growth cone, of a nerve cell. In actively extending growth cones, a laser spot is placed in front of a specific area of the nerve's leading edge, enhancing growth into the beam focus and resulting in guided neuronal turns as well as enhanced growth. The power of our laser is chosen so that the resulting gradient forces are sufficiently powerful to bias the actin polymerization-driven lamellipodia extension, but too weak to hold and move the growth cone. We are therefore using light to control a natural biological process, in sharp contrast to the established technique of optical tweezers [Ashkin, A. (1970) Phys. Rev. Lett. 24, 156-159; Ashkin, A. & Dziedzic, J. M. (1987) Science 235, 1517-1520], which uses large optical forces to manipulate entire structures. Our results therefore open an avenue to controlling neuronal growth in vitro and in vivo with a simple, noncontact technique.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.252631899</identifier><identifier>PMID: 12456879</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Actin Cytoskeleton - physiology ; Actin Cytoskeleton - radiation effects ; Actins ; Animals ; Biological Sciences ; Biophysics ; Cell growth ; Cell lines ; Cell Movement - radiation effects ; Cytoplasm - chemistry ; Diffusion ; Electromagnetic Phenomena ; Glioma - pathology ; Growth cones ; Growth Cones - radiation effects ; Growth Cones - ultrastructure ; Hybrid Cells - pathology ; Hybrid Cells - radiation effects ; Hybrid Cells - ultrastructure ; Laser beams ; Laser power ; Lasers ; Light ; Mice ; Micromanipulation - methods ; Nerves ; Neuroblastoma - pathology ; Neurons ; Neurons - radiation effects ; Neurons - ultrastructure ; Optics ; PC12 Cells ; Proteins - radiation effects ; Pseudopodia ; Pseudopodia - physiology ; Rats ; Tumor Cells, Cultured - radiation effects ; Tumor Cells, Cultured - ultrastructure</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2002-12, Vol.99 (25), p.16024-16028</ispartof><rights>Copyright 1993-2002 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Dec 10, 2002</rights><rights>Copyright © 2002, The National Academy of Sciences 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-fa075c24721425a97e9490585a2d2331e922df0307664cf8a090165f6a6bccf73</citedby><cites>FETCH-LOGICAL-c521t-fa075c24721425a97e9490585a2d2331e922df0307664cf8a090165f6a6bccf73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/99/25.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3073901$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3073901$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12456879$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ehrlicher, A.</creatorcontrib><creatorcontrib>Betz, T.</creatorcontrib><creatorcontrib>Stuhrmann, B.</creatorcontrib><creatorcontrib>Koch, D.</creatorcontrib><creatorcontrib>Milner, V.</creatorcontrib><creatorcontrib>Raizen, M. G.</creatorcontrib><creatorcontrib>Käs, J.</creatorcontrib><title>Guiding Neuronal Growth with Light</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Control over neuronal growth is a fundamental objective in neuroscience, cell biology, developmental biology, biophysics, and biomedicine and is particularly important for the formation of neural circuits in vitro, as well as nerve regeneration in vivo [Zeck, G. & Fromherz, P. (2001) Proc. Natl. Acad. Sci. USA 98, 10457-10462]. We have shown experimentally that we can use weak optical forces to guide the direction taken by the leading edge, or growth cone, of a nerve cell. In actively extending growth cones, a laser spot is placed in front of a specific area of the nerve's leading edge, enhancing growth into the beam focus and resulting in guided neuronal turns as well as enhanced growth. The power of our laser is chosen so that the resulting gradient forces are sufficiently powerful to bias the actin polymerization-driven lamellipodia extension, but too weak to hold and move the growth cone. We are therefore using light to control a natural biological process, in sharp contrast to the established technique of optical tweezers [Ashkin, A. (1970) Phys. Rev. Lett. 24, 156-159; Ashkin, A. & Dziedzic, J. M. (1987) Science 235, 1517-1520], which uses large optical forces to manipulate entire structures. Our results therefore open an avenue to controlling neuronal growth in vitro and in vivo with a simple, noncontact technique.</description><subject>Actin Cytoskeleton - physiology</subject><subject>Actin Cytoskeleton - radiation effects</subject><subject>Actins</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Biophysics</subject><subject>Cell growth</subject><subject>Cell lines</subject><subject>Cell Movement - radiation effects</subject><subject>Cytoplasm - chemistry</subject><subject>Diffusion</subject><subject>Electromagnetic Phenomena</subject><subject>Glioma - pathology</subject><subject>Growth cones</subject><subject>Growth Cones - radiation effects</subject><subject>Growth Cones - ultrastructure</subject><subject>Hybrid Cells - pathology</subject><subject>Hybrid Cells - radiation effects</subject><subject>Hybrid Cells - ultrastructure</subject><subject>Laser beams</subject><subject>Laser power</subject><subject>Lasers</subject><subject>Light</subject><subject>Mice</subject><subject>Micromanipulation - methods</subject><subject>Nerves</subject><subject>Neuroblastoma - pathology</subject><subject>Neurons</subject><subject>Neurons - radiation effects</subject><subject>Neurons - ultrastructure</subject><subject>Optics</subject><subject>PC12 Cells</subject><subject>Proteins - radiation effects</subject><subject>Pseudopodia</subject><subject>Pseudopodia - physiology</subject><subject>Rats</subject><subject>Tumor Cells, Cultured - radiation effects</subject><subject>Tumor Cells, Cultured - ultrastructure</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkb1PG0EQxVcRKDiElioKlguU5pzZ2duvggKh4CBZSZPUq-W8Z591vnV27zD89-zJxkAKaGaK-b3Rm3mEnFIYU5Ds-7qxcYwcBaNK6w9kQEHTTOQaDsgAAGWmcsyPyKcYlwCguYKP5IhizoWSekBGk66aVc18-Mt1wTe2Hk6C37SL4aZKZVrNF-1ncljaOrqTXT8mf69__Ln6mU1_T26uLqdZwZG2WWlB8gJziTRHbrV0OrngilucIWPUacRZCQykEHlRKgsaqOClsOK2KErJjsnFdu-6u125WeGaNtjarEO1suHBeFuZ15OmWpi5vzOUKc5V0p_v9MH_61xszaqKhatr2zjfRSNRciH1-yBVArkUkMDRf-DSdyE9KRqEdCUq6G2Pt1ARfIzBlXvHFEyfkekzMvuMkuDryzuf8V0oCTjbAb3waax12mGoAMwT8e1twpRdXbfuvk3oly26jK0PezbFwNL_2SMWu6xx</recordid><startdate>20021210</startdate><enddate>20021210</enddate><creator>Ehrlicher, A.</creator><creator>Betz, T.</creator><creator>Stuhrmann, B.</creator><creator>Koch, D.</creator><creator>Milner, V.</creator><creator>Raizen, M. G.</creator><creator>Käs, J.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20021210</creationdate><title>Guiding Neuronal Growth with Light</title><author>Ehrlicher, A. ; Betz, T. ; Stuhrmann, B. ; Koch, D. ; Milner, V. ; Raizen, M. G. ; Käs, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-fa075c24721425a97e9490585a2d2331e922df0307664cf8a090165f6a6bccf73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Actin Cytoskeleton - physiology</topic><topic>Actin Cytoskeleton - radiation effects</topic><topic>Actins</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Biophysics</topic><topic>Cell growth</topic><topic>Cell lines</topic><topic>Cell Movement - radiation effects</topic><topic>Cytoplasm - chemistry</topic><topic>Diffusion</topic><topic>Electromagnetic Phenomena</topic><topic>Glioma - pathology</topic><topic>Growth cones</topic><topic>Growth Cones - radiation effects</topic><topic>Growth Cones - ultrastructure</topic><topic>Hybrid Cells - pathology</topic><topic>Hybrid Cells - radiation effects</topic><topic>Hybrid Cells - ultrastructure</topic><topic>Laser beams</topic><topic>Laser power</topic><topic>Lasers</topic><topic>Light</topic><topic>Mice</topic><topic>Micromanipulation - methods</topic><topic>Nerves</topic><topic>Neuroblastoma - pathology</topic><topic>Neurons</topic><topic>Neurons - radiation effects</topic><topic>Neurons - ultrastructure</topic><topic>Optics</topic><topic>PC12 Cells</topic><topic>Proteins - radiation effects</topic><topic>Pseudopodia</topic><topic>Pseudopodia - physiology</topic><topic>Rats</topic><topic>Tumor Cells, Cultured - radiation effects</topic><topic>Tumor Cells, Cultured - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ehrlicher, A.</creatorcontrib><creatorcontrib>Betz, T.</creatorcontrib><creatorcontrib>Stuhrmann, B.</creatorcontrib><creatorcontrib>Koch, D.</creatorcontrib><creatorcontrib>Milner, V.</creatorcontrib><creatorcontrib>Raizen, M. G.</creatorcontrib><creatorcontrib>Käs, J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ehrlicher, A.</au><au>Betz, T.</au><au>Stuhrmann, B.</au><au>Koch, D.</au><au>Milner, V.</au><au>Raizen, M. G.</au><au>Käs, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Guiding Neuronal Growth with Light</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2002-12-10</date><risdate>2002</risdate><volume>99</volume><issue>25</issue><spage>16024</spage><epage>16028</epage><pages>16024-16028</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Control over neuronal growth is a fundamental objective in neuroscience, cell biology, developmental biology, biophysics, and biomedicine and is particularly important for the formation of neural circuits in vitro, as well as nerve regeneration in vivo [Zeck, G. & Fromherz, P. (2001) Proc. Natl. Acad. Sci. USA 98, 10457-10462]. We have shown experimentally that we can use weak optical forces to guide the direction taken by the leading edge, or growth cone, of a nerve cell. In actively extending growth cones, a laser spot is placed in front of a specific area of the nerve's leading edge, enhancing growth into the beam focus and resulting in guided neuronal turns as well as enhanced growth. The power of our laser is chosen so that the resulting gradient forces are sufficiently powerful to bias the actin polymerization-driven lamellipodia extension, but too weak to hold and move the growth cone. We are therefore using light to control a natural biological process, in sharp contrast to the established technique of optical tweezers [Ashkin, A. (1970) Phys. Rev. Lett. 24, 156-159; Ashkin, A. & Dziedzic, J. M. (1987) Science 235, 1517-1520], which uses large optical forces to manipulate entire structures. Our results therefore open an avenue to controlling neuronal growth in vitro and in vivo with a simple, noncontact technique.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>12456879</pmid><doi>10.1073/pnas.252631899</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2002-12, Vol.99 (25), p.16024-16028 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_18625760 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Actin Cytoskeleton - physiology Actin Cytoskeleton - radiation effects Actins Animals Biological Sciences Biophysics Cell growth Cell lines Cell Movement - radiation effects Cytoplasm - chemistry Diffusion Electromagnetic Phenomena Glioma - pathology Growth cones Growth Cones - radiation effects Growth Cones - ultrastructure Hybrid Cells - pathology Hybrid Cells - radiation effects Hybrid Cells - ultrastructure Laser beams Laser power Lasers Light Mice Micromanipulation - methods Nerves Neuroblastoma - pathology Neurons Neurons - radiation effects Neurons - ultrastructure Optics PC12 Cells Proteins - radiation effects Pseudopodia Pseudopodia - physiology Rats Tumor Cells, Cultured - radiation effects Tumor Cells, Cultured - ultrastructure |
title | Guiding Neuronal Growth with Light |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A15%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Guiding%20Neuronal%20Growth%20with%20Light&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ehrlicher,%20A.&rft.date=2002-12-10&rft.volume=99&rft.issue=25&rft.spage=16024&rft.epage=16028&rft.pages=16024-16028&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.252631899&rft_dat=%3Cjstor_proqu%3E3073901%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201422807&rft_id=info:pmid/12456879&rft_jstor_id=3073901&rfr_iscdi=true |