Guiding Neuronal Growth with Light

Control over neuronal growth is a fundamental objective in neuroscience, cell biology, developmental biology, biophysics, and biomedicine and is particularly important for the formation of neural circuits in vitro, as well as nerve regeneration in vivo [Zeck, G. & Fromherz, P. (2001) Proc. Natl....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2002-12, Vol.99 (25), p.16024-16028
Hauptverfasser: Ehrlicher, A., Betz, T., Stuhrmann, B., Koch, D., Milner, V., Raizen, M. G., Käs, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16028
container_issue 25
container_start_page 16024
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 99
creator Ehrlicher, A.
Betz, T.
Stuhrmann, B.
Koch, D.
Milner, V.
Raizen, M. G.
Käs, J.
description Control over neuronal growth is a fundamental objective in neuroscience, cell biology, developmental biology, biophysics, and biomedicine and is particularly important for the formation of neural circuits in vitro, as well as nerve regeneration in vivo [Zeck, G. & Fromherz, P. (2001) Proc. Natl. Acad. Sci. USA 98, 10457-10462]. We have shown experimentally that we can use weak optical forces to guide the direction taken by the leading edge, or growth cone, of a nerve cell. In actively extending growth cones, a laser spot is placed in front of a specific area of the nerve's leading edge, enhancing growth into the beam focus and resulting in guided neuronal turns as well as enhanced growth. The power of our laser is chosen so that the resulting gradient forces are sufficiently powerful to bias the actin polymerization-driven lamellipodia extension, but too weak to hold and move the growth cone. We are therefore using light to control a natural biological process, in sharp contrast to the established technique of optical tweezers [Ashkin, A. (1970) Phys. Rev. Lett. 24, 156-159; Ashkin, A. & Dziedzic, J. M. (1987) Science 235, 1517-1520], which uses large optical forces to manipulate entire structures. Our results therefore open an avenue to controlling neuronal growth in vitro and in vivo with a simple, noncontact technique.
doi_str_mv 10.1073/pnas.252631899
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_18625760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3073901</jstor_id><sourcerecordid>3073901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-fa075c24721425a97e9490585a2d2331e922df0307664cf8a090165f6a6bccf73</originalsourceid><addsrcrecordid>eNqFkb1PG0EQxVcRKDiElioKlguU5pzZ2duvggKh4CBZSZPUq-W8Z591vnV27zD89-zJxkAKaGaK-b3Rm3mEnFIYU5Ds-7qxcYwcBaNK6w9kQEHTTOQaDsgAAGWmcsyPyKcYlwCguYKP5IhizoWSekBGk66aVc18-Mt1wTe2Hk6C37SL4aZKZVrNF-1ncljaOrqTXT8mf69__Ln6mU1_T26uLqdZwZG2WWlB8gJziTRHbrV0OrngilucIWPUacRZCQykEHlRKgsaqOClsOK2KErJjsnFdu-6u125WeGaNtjarEO1suHBeFuZ15OmWpi5vzOUKc5V0p_v9MH_61xszaqKhatr2zjfRSNRciH1-yBVArkUkMDRf-DSdyE9KRqEdCUq6G2Pt1ARfIzBlXvHFEyfkekzMvuMkuDryzuf8V0oCTjbAb3waax12mGoAMwT8e1twpRdXbfuvk3oly26jK0PezbFwNL_2SMWu6xx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201422807</pqid></control><display><type>article</type><title>Guiding Neuronal Growth with Light</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ehrlicher, A. ; Betz, T. ; Stuhrmann, B. ; Koch, D. ; Milner, V. ; Raizen, M. G. ; Käs, J.</creator><creatorcontrib>Ehrlicher, A. ; Betz, T. ; Stuhrmann, B. ; Koch, D. ; Milner, V. ; Raizen, M. G. ; Käs, J.</creatorcontrib><description>Control over neuronal growth is a fundamental objective in neuroscience, cell biology, developmental biology, biophysics, and biomedicine and is particularly important for the formation of neural circuits in vitro, as well as nerve regeneration in vivo [Zeck, G. &amp; Fromherz, P. (2001) Proc. Natl. Acad. Sci. USA 98, 10457-10462]. We have shown experimentally that we can use weak optical forces to guide the direction taken by the leading edge, or growth cone, of a nerve cell. In actively extending growth cones, a laser spot is placed in front of a specific area of the nerve's leading edge, enhancing growth into the beam focus and resulting in guided neuronal turns as well as enhanced growth. The power of our laser is chosen so that the resulting gradient forces are sufficiently powerful to bias the actin polymerization-driven lamellipodia extension, but too weak to hold and move the growth cone. We are therefore using light to control a natural biological process, in sharp contrast to the established technique of optical tweezers [Ashkin, A. (1970) Phys. Rev. Lett. 24, 156-159; Ashkin, A. &amp; Dziedzic, J. M. (1987) Science 235, 1517-1520], which uses large optical forces to manipulate entire structures. Our results therefore open an avenue to controlling neuronal growth in vitro and in vivo with a simple, noncontact technique.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.252631899</identifier><identifier>PMID: 12456879</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Actin Cytoskeleton - physiology ; Actin Cytoskeleton - radiation effects ; Actins ; Animals ; Biological Sciences ; Biophysics ; Cell growth ; Cell lines ; Cell Movement - radiation effects ; Cytoplasm - chemistry ; Diffusion ; Electromagnetic Phenomena ; Glioma - pathology ; Growth cones ; Growth Cones - radiation effects ; Growth Cones - ultrastructure ; Hybrid Cells - pathology ; Hybrid Cells - radiation effects ; Hybrid Cells - ultrastructure ; Laser beams ; Laser power ; Lasers ; Light ; Mice ; Micromanipulation - methods ; Nerves ; Neuroblastoma - pathology ; Neurons ; Neurons - radiation effects ; Neurons - ultrastructure ; Optics ; PC12 Cells ; Proteins - radiation effects ; Pseudopodia ; Pseudopodia - physiology ; Rats ; Tumor Cells, Cultured - radiation effects ; Tumor Cells, Cultured - ultrastructure</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2002-12, Vol.99 (25), p.16024-16028</ispartof><rights>Copyright 1993-2002 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Dec 10, 2002</rights><rights>Copyright © 2002, The National Academy of Sciences 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-fa075c24721425a97e9490585a2d2331e922df0307664cf8a090165f6a6bccf73</citedby><cites>FETCH-LOGICAL-c521t-fa075c24721425a97e9490585a2d2331e922df0307664cf8a090165f6a6bccf73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/99/25.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3073901$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3073901$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12456879$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ehrlicher, A.</creatorcontrib><creatorcontrib>Betz, T.</creatorcontrib><creatorcontrib>Stuhrmann, B.</creatorcontrib><creatorcontrib>Koch, D.</creatorcontrib><creatorcontrib>Milner, V.</creatorcontrib><creatorcontrib>Raizen, M. G.</creatorcontrib><creatorcontrib>Käs, J.</creatorcontrib><title>Guiding Neuronal Growth with Light</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Control over neuronal growth is a fundamental objective in neuroscience, cell biology, developmental biology, biophysics, and biomedicine and is particularly important for the formation of neural circuits in vitro, as well as nerve regeneration in vivo [Zeck, G. &amp; Fromherz, P. (2001) Proc. Natl. Acad. Sci. USA 98, 10457-10462]. We have shown experimentally that we can use weak optical forces to guide the direction taken by the leading edge, or growth cone, of a nerve cell. In actively extending growth cones, a laser spot is placed in front of a specific area of the nerve's leading edge, enhancing growth into the beam focus and resulting in guided neuronal turns as well as enhanced growth. The power of our laser is chosen so that the resulting gradient forces are sufficiently powerful to bias the actin polymerization-driven lamellipodia extension, but too weak to hold and move the growth cone. We are therefore using light to control a natural biological process, in sharp contrast to the established technique of optical tweezers [Ashkin, A. (1970) Phys. Rev. Lett. 24, 156-159; Ashkin, A. &amp; Dziedzic, J. M. (1987) Science 235, 1517-1520], which uses large optical forces to manipulate entire structures. Our results therefore open an avenue to controlling neuronal growth in vitro and in vivo with a simple, noncontact technique.</description><subject>Actin Cytoskeleton - physiology</subject><subject>Actin Cytoskeleton - radiation effects</subject><subject>Actins</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Biophysics</subject><subject>Cell growth</subject><subject>Cell lines</subject><subject>Cell Movement - radiation effects</subject><subject>Cytoplasm - chemistry</subject><subject>Diffusion</subject><subject>Electromagnetic Phenomena</subject><subject>Glioma - pathology</subject><subject>Growth cones</subject><subject>Growth Cones - radiation effects</subject><subject>Growth Cones - ultrastructure</subject><subject>Hybrid Cells - pathology</subject><subject>Hybrid Cells - radiation effects</subject><subject>Hybrid Cells - ultrastructure</subject><subject>Laser beams</subject><subject>Laser power</subject><subject>Lasers</subject><subject>Light</subject><subject>Mice</subject><subject>Micromanipulation - methods</subject><subject>Nerves</subject><subject>Neuroblastoma - pathology</subject><subject>Neurons</subject><subject>Neurons - radiation effects</subject><subject>Neurons - ultrastructure</subject><subject>Optics</subject><subject>PC12 Cells</subject><subject>Proteins - radiation effects</subject><subject>Pseudopodia</subject><subject>Pseudopodia - physiology</subject><subject>Rats</subject><subject>Tumor Cells, Cultured - radiation effects</subject><subject>Tumor Cells, Cultured - ultrastructure</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkb1PG0EQxVcRKDiElioKlguU5pzZ2duvggKh4CBZSZPUq-W8Z591vnV27zD89-zJxkAKaGaK-b3Rm3mEnFIYU5Ds-7qxcYwcBaNK6w9kQEHTTOQaDsgAAGWmcsyPyKcYlwCguYKP5IhizoWSekBGk66aVc18-Mt1wTe2Hk6C37SL4aZKZVrNF-1ncljaOrqTXT8mf69__Ln6mU1_T26uLqdZwZG2WWlB8gJziTRHbrV0OrngilucIWPUacRZCQykEHlRKgsaqOClsOK2KErJjsnFdu-6u125WeGaNtjarEO1suHBeFuZ15OmWpi5vzOUKc5V0p_v9MH_61xszaqKhatr2zjfRSNRciH1-yBVArkUkMDRf-DSdyE9KRqEdCUq6G2Pt1ARfIzBlXvHFEyfkekzMvuMkuDryzuf8V0oCTjbAb3waax12mGoAMwT8e1twpRdXbfuvk3oly26jK0PezbFwNL_2SMWu6xx</recordid><startdate>20021210</startdate><enddate>20021210</enddate><creator>Ehrlicher, A.</creator><creator>Betz, T.</creator><creator>Stuhrmann, B.</creator><creator>Koch, D.</creator><creator>Milner, V.</creator><creator>Raizen, M. G.</creator><creator>Käs, J.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20021210</creationdate><title>Guiding Neuronal Growth with Light</title><author>Ehrlicher, A. ; Betz, T. ; Stuhrmann, B. ; Koch, D. ; Milner, V. ; Raizen, M. G. ; Käs, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-fa075c24721425a97e9490585a2d2331e922df0307664cf8a090165f6a6bccf73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Actin Cytoskeleton - physiology</topic><topic>Actin Cytoskeleton - radiation effects</topic><topic>Actins</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Biophysics</topic><topic>Cell growth</topic><topic>Cell lines</topic><topic>Cell Movement - radiation effects</topic><topic>Cytoplasm - chemistry</topic><topic>Diffusion</topic><topic>Electromagnetic Phenomena</topic><topic>Glioma - pathology</topic><topic>Growth cones</topic><topic>Growth Cones - radiation effects</topic><topic>Growth Cones - ultrastructure</topic><topic>Hybrid Cells - pathology</topic><topic>Hybrid Cells - radiation effects</topic><topic>Hybrid Cells - ultrastructure</topic><topic>Laser beams</topic><topic>Laser power</topic><topic>Lasers</topic><topic>Light</topic><topic>Mice</topic><topic>Micromanipulation - methods</topic><topic>Nerves</topic><topic>Neuroblastoma - pathology</topic><topic>Neurons</topic><topic>Neurons - radiation effects</topic><topic>Neurons - ultrastructure</topic><topic>Optics</topic><topic>PC12 Cells</topic><topic>Proteins - radiation effects</topic><topic>Pseudopodia</topic><topic>Pseudopodia - physiology</topic><topic>Rats</topic><topic>Tumor Cells, Cultured - radiation effects</topic><topic>Tumor Cells, Cultured - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ehrlicher, A.</creatorcontrib><creatorcontrib>Betz, T.</creatorcontrib><creatorcontrib>Stuhrmann, B.</creatorcontrib><creatorcontrib>Koch, D.</creatorcontrib><creatorcontrib>Milner, V.</creatorcontrib><creatorcontrib>Raizen, M. G.</creatorcontrib><creatorcontrib>Käs, J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ehrlicher, A.</au><au>Betz, T.</au><au>Stuhrmann, B.</au><au>Koch, D.</au><au>Milner, V.</au><au>Raizen, M. G.</au><au>Käs, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Guiding Neuronal Growth with Light</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2002-12-10</date><risdate>2002</risdate><volume>99</volume><issue>25</issue><spage>16024</spage><epage>16028</epage><pages>16024-16028</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Control over neuronal growth is a fundamental objective in neuroscience, cell biology, developmental biology, biophysics, and biomedicine and is particularly important for the formation of neural circuits in vitro, as well as nerve regeneration in vivo [Zeck, G. &amp; Fromherz, P. (2001) Proc. Natl. Acad. Sci. USA 98, 10457-10462]. We have shown experimentally that we can use weak optical forces to guide the direction taken by the leading edge, or growth cone, of a nerve cell. In actively extending growth cones, a laser spot is placed in front of a specific area of the nerve's leading edge, enhancing growth into the beam focus and resulting in guided neuronal turns as well as enhanced growth. The power of our laser is chosen so that the resulting gradient forces are sufficiently powerful to bias the actin polymerization-driven lamellipodia extension, but too weak to hold and move the growth cone. We are therefore using light to control a natural biological process, in sharp contrast to the established technique of optical tweezers [Ashkin, A. (1970) Phys. Rev. Lett. 24, 156-159; Ashkin, A. &amp; Dziedzic, J. M. (1987) Science 235, 1517-1520], which uses large optical forces to manipulate entire structures. Our results therefore open an avenue to controlling neuronal growth in vitro and in vivo with a simple, noncontact technique.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>12456879</pmid><doi>10.1073/pnas.252631899</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2002-12, Vol.99 (25), p.16024-16028
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_18625760
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Actin Cytoskeleton - physiology
Actin Cytoskeleton - radiation effects
Actins
Animals
Biological Sciences
Biophysics
Cell growth
Cell lines
Cell Movement - radiation effects
Cytoplasm - chemistry
Diffusion
Electromagnetic Phenomena
Glioma - pathology
Growth cones
Growth Cones - radiation effects
Growth Cones - ultrastructure
Hybrid Cells - pathology
Hybrid Cells - radiation effects
Hybrid Cells - ultrastructure
Laser beams
Laser power
Lasers
Light
Mice
Micromanipulation - methods
Nerves
Neuroblastoma - pathology
Neurons
Neurons - radiation effects
Neurons - ultrastructure
Optics
PC12 Cells
Proteins - radiation effects
Pseudopodia
Pseudopodia - physiology
Rats
Tumor Cells, Cultured - radiation effects
Tumor Cells, Cultured - ultrastructure
title Guiding Neuronal Growth with Light
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A15%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Guiding%20Neuronal%20Growth%20with%20Light&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ehrlicher,%20A.&rft.date=2002-12-10&rft.volume=99&rft.issue=25&rft.spage=16024&rft.epage=16028&rft.pages=16024-16028&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.252631899&rft_dat=%3Cjstor_proqu%3E3073901%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201422807&rft_id=info:pmid/12456879&rft_jstor_id=3073901&rfr_iscdi=true