Phenotypic and genotypic spectrum of congenital disorders of glycosylation type I and type II
Congenital disorders of glycosylation (CDG) are inborn defects of glycan metabolism. They are multisystem disorders. Analysis of transferrin isoforms is applied as a screening test for CDG type I (CDG-I) and type II (CDG-II). We performed a retrospective cohort study to determine spectrum of phenoty...
Gespeichert in:
Veröffentlicht in: | Molecular genetics and metabolism 2017-03, Vol.120 (3), p.235-242 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 242 |
---|---|
container_issue | 3 |
container_start_page | 235 |
container_title | Molecular genetics and metabolism |
container_volume | 120 |
creator | Al Teneiji, Amal Bruun, Theodora U.J. Sidky, Sarah Cordeiro, Dawn Cohn, Ronald D Mendoza-Londono, Roberto Moharir, Mahendranath Raiman, Julian Siriwardena, Komudi Kyriakopoulou, Lianna Mercimek-Mahmutoglu, Saadet |
description | Congenital disorders of glycosylation (CDG) are inborn defects of glycan metabolism. They are multisystem disorders. Analysis of transferrin isoforms is applied as a screening test for CDG type I (CDG-I) and type II (CDG-II). We performed a retrospective cohort study to determine spectrum of phenotype and genotype and prevalence of the different subtypes of CDG-I and CDG-II.
All patients with CDG-I and CDG-II evaluated in our institution's Metabolic Genetics Clinics were included. Electronic and paper patient charts were reviewed. We set-up a high performance liquid chromatography transferrin isoelectric focusing (TIEF) method to measure transferrin isoforms in our Institution. We reviewed the literature for the rare CDG-I and CDG-II subtypes seen in our Institution.
Fifteen patients were included: 9 with PMM2-CDG and 6 with non-PMM2-CDG (one ALG3-CDG, one ALG9-CDG, two ALG11-CDG, one MPDU1-CDG and one ATP6V0A2-CDG). All patients with PMM2-CDG and 5 patients with non-PMM2-CDG showed abnormal TIEF suggestive of CDG-I or CDG-II pattern. In all patients, molecular diagnosis was confirmed either by single gene testing, targeted next generation sequencing for CDG genes, or by whole exome sequencing.
We report 15 new patients with CDG-I and CDG-II. Whole exome sequencing will likely identify more patients with normal TIEF and expand the phenotypic spectrum of CDG-I and CDG-II.
•Nine new patients with PMM2-CDG•Six new patients with CDG-I and CDG-II subtypes ALG3-ALG9-, ALG11-, MPDU1-, ATP6V0A2-CDG•Five novel likely pathogenic variants in various CDG genes•Modified TIEF method using HPLC as screening test•Normal TIEF should not exclude CDG-I and CDG-II. |
doi_str_mv | 10.1016/j.ymgme.2016.12.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1862285484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1096719216303936</els_id><sourcerecordid>1862285484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-5a01ca33ae42dcb1233ae5c9bb6ed0f1838770b18d7b719dcad93e82ccde8f5b3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwBUgoSzYJHudRZ8ECIR6VKsEClshy7ElxlcTFTpHy97jPJSvfGd87ozmEXANNgEJxt0yGdtFiwkKRAEsoZCdkDLQs4imjxelBQ8lG5ML7JaUAeZmdkxHjwFjBYUy-3r-xs_2wMiqSnY4Wx8qvUPVu3Ua2jpTtwofpZRNp463T6Pymv2gGZf3QyN7YLgo5jGbbMTs5uyRntWw8Xu3fCfl8fvp4fI3nby-zx4d5rDKW93EuKSiZphIzplUFbCNzVVZVgZrWwFM-ndIKuJ5W4RytpC5T5EwpjbzOq3RCbndzV87-rNH3ojVeYdPIDu3aC-AFYzzPeBas6c6qnPXeYS1WzrTSDQKo2HAVS7HlKjZcBTARuIbUzX7BumpRHzMHkMFwvzNgOPPXoBNeGewUauMCR6Gt-XfBH9jPjCc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1862285484</pqid></control><display><type>article</type><title>Phenotypic and genotypic spectrum of congenital disorders of glycosylation type I and type II</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Al Teneiji, Amal ; Bruun, Theodora U.J. ; Sidky, Sarah ; Cordeiro, Dawn ; Cohn, Ronald D ; Mendoza-Londono, Roberto ; Moharir, Mahendranath ; Raiman, Julian ; Siriwardena, Komudi ; Kyriakopoulou, Lianna ; Mercimek-Mahmutoglu, Saadet</creator><creatorcontrib>Al Teneiji, Amal ; Bruun, Theodora U.J. ; Sidky, Sarah ; Cordeiro, Dawn ; Cohn, Ronald D ; Mendoza-Londono, Roberto ; Moharir, Mahendranath ; Raiman, Julian ; Siriwardena, Komudi ; Kyriakopoulou, Lianna ; Mercimek-Mahmutoglu, Saadet</creatorcontrib><description>Congenital disorders of glycosylation (CDG) are inborn defects of glycan metabolism. They are multisystem disorders. Analysis of transferrin isoforms is applied as a screening test for CDG type I (CDG-I) and type II (CDG-II). We performed a retrospective cohort study to determine spectrum of phenotype and genotype and prevalence of the different subtypes of CDG-I and CDG-II.
All patients with CDG-I and CDG-II evaluated in our institution's Metabolic Genetics Clinics were included. Electronic and paper patient charts were reviewed. We set-up a high performance liquid chromatography transferrin isoelectric focusing (TIEF) method to measure transferrin isoforms in our Institution. We reviewed the literature for the rare CDG-I and CDG-II subtypes seen in our Institution.
Fifteen patients were included: 9 with PMM2-CDG and 6 with non-PMM2-CDG (one ALG3-CDG, one ALG9-CDG, two ALG11-CDG, one MPDU1-CDG and one ATP6V0A2-CDG). All patients with PMM2-CDG and 5 patients with non-PMM2-CDG showed abnormal TIEF suggestive of CDG-I or CDG-II pattern. In all patients, molecular diagnosis was confirmed either by single gene testing, targeted next generation sequencing for CDG genes, or by whole exome sequencing.
We report 15 new patients with CDG-I and CDG-II. Whole exome sequencing will likely identify more patients with normal TIEF and expand the phenotypic spectrum of CDG-I and CDG-II.
•Nine new patients with PMM2-CDG•Six new patients with CDG-I and CDG-II subtypes ALG3-ALG9-, ALG11-, MPDU1-, ATP6V0A2-CDG•Five novel likely pathogenic variants in various CDG genes•Modified TIEF method using HPLC as screening test•Normal TIEF should not exclude CDG-I and CDG-II.</description><identifier>ISSN: 1096-7192</identifier><identifier>EISSN: 1096-7206</identifier><identifier>DOI: 10.1016/j.ymgme.2016.12.014</identifier><identifier>PMID: 28122681</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adolescent ; Child ; Child, Preschool ; Chromatography, High Pressure Liquid ; Combined N- and O-glycosylation ; Congenital disorders of glycosylation ; Congenital Disorders of Glycosylation - classification ; Congenital Disorders of Glycosylation - diagnosis ; Congenital Disorders of Glycosylation - genetics ; Congenital Disorders of Glycosylation - metabolism ; Exome ; Female ; Gene Regulatory Networks ; Genetic Predisposition to Disease ; Genotype ; High-Throughput Nucleotide Sequencing - methods ; Humans ; Infant ; Male ; N-glycosylation ; Phenotype ; Protein Isoforms - metabolism ; Retrospective Studies ; Sequence Analysis, DNA - methods ; Transferrin - metabolism ; Transferrin isoelectric focusing</subject><ispartof>Molecular genetics and metabolism, 2017-03, Vol.120 (3), p.235-242</ispartof><rights>2017</rights><rights>Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-5a01ca33ae42dcb1233ae5c9bb6ed0f1838770b18d7b719dcad93e82ccde8f5b3</citedby><cites>FETCH-LOGICAL-c425t-5a01ca33ae42dcb1233ae5c9bb6ed0f1838770b18d7b719dcad93e82ccde8f5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1096719216303936$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28122681$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Al Teneiji, Amal</creatorcontrib><creatorcontrib>Bruun, Theodora U.J.</creatorcontrib><creatorcontrib>Sidky, Sarah</creatorcontrib><creatorcontrib>Cordeiro, Dawn</creatorcontrib><creatorcontrib>Cohn, Ronald D</creatorcontrib><creatorcontrib>Mendoza-Londono, Roberto</creatorcontrib><creatorcontrib>Moharir, Mahendranath</creatorcontrib><creatorcontrib>Raiman, Julian</creatorcontrib><creatorcontrib>Siriwardena, Komudi</creatorcontrib><creatorcontrib>Kyriakopoulou, Lianna</creatorcontrib><creatorcontrib>Mercimek-Mahmutoglu, Saadet</creatorcontrib><title>Phenotypic and genotypic spectrum of congenital disorders of glycosylation type I and type II</title><title>Molecular genetics and metabolism</title><addtitle>Mol Genet Metab</addtitle><description>Congenital disorders of glycosylation (CDG) are inborn defects of glycan metabolism. They are multisystem disorders. Analysis of transferrin isoforms is applied as a screening test for CDG type I (CDG-I) and type II (CDG-II). We performed a retrospective cohort study to determine spectrum of phenotype and genotype and prevalence of the different subtypes of CDG-I and CDG-II.
All patients with CDG-I and CDG-II evaluated in our institution's Metabolic Genetics Clinics were included. Electronic and paper patient charts were reviewed. We set-up a high performance liquid chromatography transferrin isoelectric focusing (TIEF) method to measure transferrin isoforms in our Institution. We reviewed the literature for the rare CDG-I and CDG-II subtypes seen in our Institution.
Fifteen patients were included: 9 with PMM2-CDG and 6 with non-PMM2-CDG (one ALG3-CDG, one ALG9-CDG, two ALG11-CDG, one MPDU1-CDG and one ATP6V0A2-CDG). All patients with PMM2-CDG and 5 patients with non-PMM2-CDG showed abnormal TIEF suggestive of CDG-I or CDG-II pattern. In all patients, molecular diagnosis was confirmed either by single gene testing, targeted next generation sequencing for CDG genes, or by whole exome sequencing.
We report 15 new patients with CDG-I and CDG-II. Whole exome sequencing will likely identify more patients with normal TIEF and expand the phenotypic spectrum of CDG-I and CDG-II.
•Nine new patients with PMM2-CDG•Six new patients with CDG-I and CDG-II subtypes ALG3-ALG9-, ALG11-, MPDU1-, ATP6V0A2-CDG•Five novel likely pathogenic variants in various CDG genes•Modified TIEF method using HPLC as screening test•Normal TIEF should not exclude CDG-I and CDG-II.</description><subject>Adolescent</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Chromatography, High Pressure Liquid</subject><subject>Combined N- and O-glycosylation</subject><subject>Congenital disorders of glycosylation</subject><subject>Congenital Disorders of Glycosylation - classification</subject><subject>Congenital Disorders of Glycosylation - diagnosis</subject><subject>Congenital Disorders of Glycosylation - genetics</subject><subject>Congenital Disorders of Glycosylation - metabolism</subject><subject>Exome</subject><subject>Female</subject><subject>Gene Regulatory Networks</subject><subject>Genetic Predisposition to Disease</subject><subject>Genotype</subject><subject>High-Throughput Nucleotide Sequencing - methods</subject><subject>Humans</subject><subject>Infant</subject><subject>Male</subject><subject>N-glycosylation</subject><subject>Phenotype</subject><subject>Protein Isoforms - metabolism</subject><subject>Retrospective Studies</subject><subject>Sequence Analysis, DNA - methods</subject><subject>Transferrin - metabolism</subject><subject>Transferrin isoelectric focusing</subject><issn>1096-7192</issn><issn>1096-7206</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EoqXwBUgoSzYJHudRZ8ECIR6VKsEClshy7ElxlcTFTpHy97jPJSvfGd87ozmEXANNgEJxt0yGdtFiwkKRAEsoZCdkDLQs4imjxelBQ8lG5ML7JaUAeZmdkxHjwFjBYUy-3r-xs_2wMiqSnY4Wx8qvUPVu3Ua2jpTtwofpZRNp463T6Pymv2gGZf3QyN7YLgo5jGbbMTs5uyRntWw8Xu3fCfl8fvp4fI3nby-zx4d5rDKW93EuKSiZphIzplUFbCNzVVZVgZrWwFM-ndIKuJ5W4RytpC5T5EwpjbzOq3RCbndzV87-rNH3ojVeYdPIDu3aC-AFYzzPeBas6c6qnPXeYS1WzrTSDQKo2HAVS7HlKjZcBTARuIbUzX7BumpRHzMHkMFwvzNgOPPXoBNeGewUauMCR6Gt-XfBH9jPjCc</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Al Teneiji, Amal</creator><creator>Bruun, Theodora U.J.</creator><creator>Sidky, Sarah</creator><creator>Cordeiro, Dawn</creator><creator>Cohn, Ronald D</creator><creator>Mendoza-Londono, Roberto</creator><creator>Moharir, Mahendranath</creator><creator>Raiman, Julian</creator><creator>Siriwardena, Komudi</creator><creator>Kyriakopoulou, Lianna</creator><creator>Mercimek-Mahmutoglu, Saadet</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201703</creationdate><title>Phenotypic and genotypic spectrum of congenital disorders of glycosylation type I and type II</title><author>Al Teneiji, Amal ; Bruun, Theodora U.J. ; Sidky, Sarah ; Cordeiro, Dawn ; Cohn, Ronald D ; Mendoza-Londono, Roberto ; Moharir, Mahendranath ; Raiman, Julian ; Siriwardena, Komudi ; Kyriakopoulou, Lianna ; Mercimek-Mahmutoglu, Saadet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-5a01ca33ae42dcb1233ae5c9bb6ed0f1838770b18d7b719dcad93e82ccde8f5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adolescent</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Chromatography, High Pressure Liquid</topic><topic>Combined N- and O-glycosylation</topic><topic>Congenital disorders of glycosylation</topic><topic>Congenital Disorders of Glycosylation - classification</topic><topic>Congenital Disorders of Glycosylation - diagnosis</topic><topic>Congenital Disorders of Glycosylation - genetics</topic><topic>Congenital Disorders of Glycosylation - metabolism</topic><topic>Exome</topic><topic>Female</topic><topic>Gene Regulatory Networks</topic><topic>Genetic Predisposition to Disease</topic><topic>Genotype</topic><topic>High-Throughput Nucleotide Sequencing - methods</topic><topic>Humans</topic><topic>Infant</topic><topic>Male</topic><topic>N-glycosylation</topic><topic>Phenotype</topic><topic>Protein Isoforms - metabolism</topic><topic>Retrospective Studies</topic><topic>Sequence Analysis, DNA - methods</topic><topic>Transferrin - metabolism</topic><topic>Transferrin isoelectric focusing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al Teneiji, Amal</creatorcontrib><creatorcontrib>Bruun, Theodora U.J.</creatorcontrib><creatorcontrib>Sidky, Sarah</creatorcontrib><creatorcontrib>Cordeiro, Dawn</creatorcontrib><creatorcontrib>Cohn, Ronald D</creatorcontrib><creatorcontrib>Mendoza-Londono, Roberto</creatorcontrib><creatorcontrib>Moharir, Mahendranath</creatorcontrib><creatorcontrib>Raiman, Julian</creatorcontrib><creatorcontrib>Siriwardena, Komudi</creatorcontrib><creatorcontrib>Kyriakopoulou, Lianna</creatorcontrib><creatorcontrib>Mercimek-Mahmutoglu, Saadet</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular genetics and metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al Teneiji, Amal</au><au>Bruun, Theodora U.J.</au><au>Sidky, Sarah</au><au>Cordeiro, Dawn</au><au>Cohn, Ronald D</au><au>Mendoza-Londono, Roberto</au><au>Moharir, Mahendranath</au><au>Raiman, Julian</au><au>Siriwardena, Komudi</au><au>Kyriakopoulou, Lianna</au><au>Mercimek-Mahmutoglu, Saadet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phenotypic and genotypic spectrum of congenital disorders of glycosylation type I and type II</atitle><jtitle>Molecular genetics and metabolism</jtitle><addtitle>Mol Genet Metab</addtitle><date>2017-03</date><risdate>2017</risdate><volume>120</volume><issue>3</issue><spage>235</spage><epage>242</epage><pages>235-242</pages><issn>1096-7192</issn><eissn>1096-7206</eissn><abstract>Congenital disorders of glycosylation (CDG) are inborn defects of glycan metabolism. They are multisystem disorders. Analysis of transferrin isoforms is applied as a screening test for CDG type I (CDG-I) and type II (CDG-II). We performed a retrospective cohort study to determine spectrum of phenotype and genotype and prevalence of the different subtypes of CDG-I and CDG-II.
All patients with CDG-I and CDG-II evaluated in our institution's Metabolic Genetics Clinics were included. Electronic and paper patient charts were reviewed. We set-up a high performance liquid chromatography transferrin isoelectric focusing (TIEF) method to measure transferrin isoforms in our Institution. We reviewed the literature for the rare CDG-I and CDG-II subtypes seen in our Institution.
Fifteen patients were included: 9 with PMM2-CDG and 6 with non-PMM2-CDG (one ALG3-CDG, one ALG9-CDG, two ALG11-CDG, one MPDU1-CDG and one ATP6V0A2-CDG). All patients with PMM2-CDG and 5 patients with non-PMM2-CDG showed abnormal TIEF suggestive of CDG-I or CDG-II pattern. In all patients, molecular diagnosis was confirmed either by single gene testing, targeted next generation sequencing for CDG genes, or by whole exome sequencing.
We report 15 new patients with CDG-I and CDG-II. Whole exome sequencing will likely identify more patients with normal TIEF and expand the phenotypic spectrum of CDG-I and CDG-II.
•Nine new patients with PMM2-CDG•Six new patients with CDG-I and CDG-II subtypes ALG3-ALG9-, ALG11-, MPDU1-, ATP6V0A2-CDG•Five novel likely pathogenic variants in various CDG genes•Modified TIEF method using HPLC as screening test•Normal TIEF should not exclude CDG-I and CDG-II.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28122681</pmid><doi>10.1016/j.ymgme.2016.12.014</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1096-7192 |
ispartof | Molecular genetics and metabolism, 2017-03, Vol.120 (3), p.235-242 |
issn | 1096-7192 1096-7206 |
language | eng |
recordid | cdi_proquest_miscellaneous_1862285484 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Adolescent Child Child, Preschool Chromatography, High Pressure Liquid Combined N- and O-glycosylation Congenital disorders of glycosylation Congenital Disorders of Glycosylation - classification Congenital Disorders of Glycosylation - diagnosis Congenital Disorders of Glycosylation - genetics Congenital Disorders of Glycosylation - metabolism Exome Female Gene Regulatory Networks Genetic Predisposition to Disease Genotype High-Throughput Nucleotide Sequencing - methods Humans Infant Male N-glycosylation Phenotype Protein Isoforms - metabolism Retrospective Studies Sequence Analysis, DNA - methods Transferrin - metabolism Transferrin isoelectric focusing |
title | Phenotypic and genotypic spectrum of congenital disorders of glycosylation type I and type II |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A05%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phenotypic%20and%20genotypic%20spectrum%20of%20congenital%20disorders%20of%20glycosylation%20type%20I%20and%20type%20II&rft.jtitle=Molecular%20genetics%20and%20metabolism&rft.au=Al%20Teneiji,%20Amal&rft.date=2017-03&rft.volume=120&rft.issue=3&rft.spage=235&rft.epage=242&rft.pages=235-242&rft.issn=1096-7192&rft.eissn=1096-7206&rft_id=info:doi/10.1016/j.ymgme.2016.12.014&rft_dat=%3Cproquest_cross%3E1862285484%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1862285484&rft_id=info:pmid/28122681&rft_els_id=S1096719216303936&rfr_iscdi=true |