Predicting malignancy in adrenal incidentaloma and evaluation of a novel risk stratification algorithm

Background Incidentally discovered adrenal lesions known as adrenal incidentalomas (AI) are being encountered with increasing frequency due to the widespread use of abdominal computed tomography (CT). The aim of this study was to identify the clinical predictors of malignancy in AI and to evaluate t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ANZ journal of surgery 2018-03, Vol.88 (3), p.E173-E177
Hauptverfasser: Foo, Elizabeth, Turner, Robin, Wang, Kuan‐Chi, Aniss, Adam, Gill, Anthony J., Sidhu, Stanley, Clifton‐Bligh, Roderick, Sywak, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E177
container_issue 3
container_start_page E173
container_title ANZ journal of surgery
container_volume 88
creator Foo, Elizabeth
Turner, Robin
Wang, Kuan‐Chi
Aniss, Adam
Gill, Anthony J.
Sidhu, Stanley
Clifton‐Bligh, Roderick
Sywak, Mark
description Background Incidentally discovered adrenal lesions known as adrenal incidentalomas (AI) are being encountered with increasing frequency due to the widespread use of abdominal computed tomography (CT). The aim of this study was to identify the clinical predictors of malignancy in AI and to evaluate the accuracy of a recently proposed risk stratification algorithm. Methods A retrospective analysis of 96 patients presenting with AI between 2004 and 2014 was undertaken; 66 patients underwent adrenalectomy, and 30 were managed non‐operatively. Univariate analysis including patient demographics, CT features of tumour size, density and heterogeneity was performed. Hormonal parameters including 24‐h urinary‐free cortisol and serum dehydroepiandrosterone sulphate (DHEAS) were also included. A Cleveland Clinic risk stratification model utilizing adrenal size and density was evaluated. Results The overall rate of malignancy was 8%. On univariate analysis, the following preoperative variables were predictive of malignancy – tumour size on pathology (P = 0.0031) and CT (P = 0.0016), heterogeneity on CT imaging (P = 0.0036), a relative percentage washout of less than 40% (P = 0.0178), elevated 24‐h urinary‐free cortisol levels (P = 0.0176), elevated DHEAs (P = 0.0061) and younger age at presentation (P < 0.0001). Evaluation of the Cleveland Clinic algorithm found an area under the receiver operating characteristic curve of 0.81 (95% confidence interval 0.52–1.00). Conclusion CT characteristics of tumour size, density and heterogeneity are significantly associated with malignancy in AI and applied together reliably exclude malignancy. The risk stratification algorithm utilizing size and density alone may fail to identify some smaller adrenal cancers.
doi_str_mv 10.1111/ans.13868
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1861852797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2011140854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4198-ddf43764d38c6586d7024c04265a94e5017c36a9b07102c9c43b2f90a01b90dd3</originalsourceid><addsrcrecordid>eNp1kE1LHTEUhkOp1M9F_0AJdKOLq8lMJh9LudgqiBZa1-HcJHMbm0lsMqPcf2_q3LoQPJtz4H144TwIfabklNY5g1hOaSu5_ID2KGPdoqFKfNzelLXtLtov5Z4QyrnqPqHdRlIquRB7qP-RnfVm9HGNBwh-HSGaDfYRg80uQqin8dbFEUIaAEO02D1CmGD0KeLUY8AxPbqAsy9_cBlzDXpv5hjCOmU__h4O0U4Pobij7T5Ad98ufi0vF9e336-W59cLw6iSC2t71grObCsN7yS3gjTMENbwDhRzHaHCtBzUighKGqMMa1dNrwgQulLE2vYAHc-9Dzn9nVwZ9eCLcSFAdGkqun5NZdcIJSr69Q16n6ZcPy66IdUqI7JjlTqZKZNTKdn1-iH7AfJGU6L_yddVvn6RX9kv28ZpNTj7Sv63XYGzGXjywW3eb9LnNz_nymfx-Y3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2011140854</pqid></control><display><type>article</type><title>Predicting malignancy in adrenal incidentaloma and evaluation of a novel risk stratification algorithm</title><source>MEDLINE</source><source>Wiley Online Library</source><creator>Foo, Elizabeth ; Turner, Robin ; Wang, Kuan‐Chi ; Aniss, Adam ; Gill, Anthony J. ; Sidhu, Stanley ; Clifton‐Bligh, Roderick ; Sywak, Mark</creator><creatorcontrib>Foo, Elizabeth ; Turner, Robin ; Wang, Kuan‐Chi ; Aniss, Adam ; Gill, Anthony J. ; Sidhu, Stanley ; Clifton‐Bligh, Roderick ; Sywak, Mark</creatorcontrib><description>Background Incidentally discovered adrenal lesions known as adrenal incidentalomas (AI) are being encountered with increasing frequency due to the widespread use of abdominal computed tomography (CT). The aim of this study was to identify the clinical predictors of malignancy in AI and to evaluate the accuracy of a recently proposed risk stratification algorithm. Methods A retrospective analysis of 96 patients presenting with AI between 2004 and 2014 was undertaken; 66 patients underwent adrenalectomy, and 30 were managed non‐operatively. Univariate analysis including patient demographics, CT features of tumour size, density and heterogeneity was performed. Hormonal parameters including 24‐h urinary‐free cortisol and serum dehydroepiandrosterone sulphate (DHEAS) were also included. A Cleveland Clinic risk stratification model utilizing adrenal size and density was evaluated. Results The overall rate of malignancy was 8%. On univariate analysis, the following preoperative variables were predictive of malignancy – tumour size on pathology (P = 0.0031) and CT (P = 0.0016), heterogeneity on CT imaging (P = 0.0036), a relative percentage washout of less than 40% (P = 0.0178), elevated 24‐h urinary‐free cortisol levels (P = 0.0176), elevated DHEAs (P = 0.0061) and younger age at presentation (P &lt; 0.0001). Evaluation of the Cleveland Clinic algorithm found an area under the receiver operating characteristic curve of 0.81 (95% confidence interval 0.52–1.00). Conclusion CT characteristics of tumour size, density and heterogeneity are significantly associated with malignancy in AI and applied together reliably exclude malignancy. The risk stratification algorithm utilizing size and density alone may fail to identify some smaller adrenal cancers.</description><identifier>ISSN: 1445-1433</identifier><identifier>EISSN: 1445-2197</identifier><identifier>DOI: 10.1111/ans.13868</identifier><identifier>PMID: 28118677</identifier><language>eng</language><publisher>Melbourne: John Wiley &amp; Sons Australia, Ltd</publisher><subject>Adrenal Gland Neoplasms - diagnostic imaging ; Adrenal Gland Neoplasms - pathology ; adrenal incidentaloma ; Adrenalectomy ; adrenocortical carcinoma ; Adult ; Aged ; Algorithms ; Computed tomography ; Confidence intervals ; Cortisol ; Dehydroepiandrosterone ; Demographics ; Demography ; Density ; Evaluation ; Female ; Heterogeneity ; Humans ; laparoscopic adrenalectomy ; Lesions ; Male ; Malignancy ; Middle Aged ; Neuroendocrine tumors ; Patients ; Predictive Value of Tests ; Reproducibility of Results ; Retrospective Studies ; Risk ; Risk Assessment ; Tomography, X-Ray Computed ; Tumor Burden ; Tumors</subject><ispartof>ANZ journal of surgery, 2018-03, Vol.88 (3), p.E173-E177</ispartof><rights>2017 Royal Australasian College of Surgeons</rights><rights>2017 Royal Australasian College of Surgeons.</rights><rights>2018 Royal Australasian College of Surgeons</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4198-ddf43764d38c6586d7024c04265a94e5017c36a9b07102c9c43b2f90a01b90dd3</citedby><cites>FETCH-LOGICAL-c4198-ddf43764d38c6586d7024c04265a94e5017c36a9b07102c9c43b2f90a01b90dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fans.13868$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fans.13868$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28118677$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Foo, Elizabeth</creatorcontrib><creatorcontrib>Turner, Robin</creatorcontrib><creatorcontrib>Wang, Kuan‐Chi</creatorcontrib><creatorcontrib>Aniss, Adam</creatorcontrib><creatorcontrib>Gill, Anthony J.</creatorcontrib><creatorcontrib>Sidhu, Stanley</creatorcontrib><creatorcontrib>Clifton‐Bligh, Roderick</creatorcontrib><creatorcontrib>Sywak, Mark</creatorcontrib><title>Predicting malignancy in adrenal incidentaloma and evaluation of a novel risk stratification algorithm</title><title>ANZ journal of surgery</title><addtitle>ANZ J Surg</addtitle><description>Background Incidentally discovered adrenal lesions known as adrenal incidentalomas (AI) are being encountered with increasing frequency due to the widespread use of abdominal computed tomography (CT). The aim of this study was to identify the clinical predictors of malignancy in AI and to evaluate the accuracy of a recently proposed risk stratification algorithm. Methods A retrospective analysis of 96 patients presenting with AI between 2004 and 2014 was undertaken; 66 patients underwent adrenalectomy, and 30 were managed non‐operatively. Univariate analysis including patient demographics, CT features of tumour size, density and heterogeneity was performed. Hormonal parameters including 24‐h urinary‐free cortisol and serum dehydroepiandrosterone sulphate (DHEAS) were also included. A Cleveland Clinic risk stratification model utilizing adrenal size and density was evaluated. Results The overall rate of malignancy was 8%. On univariate analysis, the following preoperative variables were predictive of malignancy – tumour size on pathology (P = 0.0031) and CT (P = 0.0016), heterogeneity on CT imaging (P = 0.0036), a relative percentage washout of less than 40% (P = 0.0178), elevated 24‐h urinary‐free cortisol levels (P = 0.0176), elevated DHEAs (P = 0.0061) and younger age at presentation (P &lt; 0.0001). Evaluation of the Cleveland Clinic algorithm found an area under the receiver operating characteristic curve of 0.81 (95% confidence interval 0.52–1.00). Conclusion CT characteristics of tumour size, density and heterogeneity are significantly associated with malignancy in AI and applied together reliably exclude malignancy. The risk stratification algorithm utilizing size and density alone may fail to identify some smaller adrenal cancers.</description><subject>Adrenal Gland Neoplasms - diagnostic imaging</subject><subject>Adrenal Gland Neoplasms - pathology</subject><subject>adrenal incidentaloma</subject><subject>Adrenalectomy</subject><subject>adrenocortical carcinoma</subject><subject>Adult</subject><subject>Aged</subject><subject>Algorithms</subject><subject>Computed tomography</subject><subject>Confidence intervals</subject><subject>Cortisol</subject><subject>Dehydroepiandrosterone</subject><subject>Demographics</subject><subject>Demography</subject><subject>Density</subject><subject>Evaluation</subject><subject>Female</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>laparoscopic adrenalectomy</subject><subject>Lesions</subject><subject>Male</subject><subject>Malignancy</subject><subject>Middle Aged</subject><subject>Neuroendocrine tumors</subject><subject>Patients</subject><subject>Predictive Value of Tests</subject><subject>Reproducibility of Results</subject><subject>Retrospective Studies</subject><subject>Risk</subject><subject>Risk Assessment</subject><subject>Tomography, X-Ray Computed</subject><subject>Tumor Burden</subject><subject>Tumors</subject><issn>1445-1433</issn><issn>1445-2197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1LHTEUhkOp1M9F_0AJdKOLq8lMJh9LudgqiBZa1-HcJHMbm0lsMqPcf2_q3LoQPJtz4H144TwIfabklNY5g1hOaSu5_ID2KGPdoqFKfNzelLXtLtov5Z4QyrnqPqHdRlIquRB7qP-RnfVm9HGNBwh-HSGaDfYRg80uQqin8dbFEUIaAEO02D1CmGD0KeLUY8AxPbqAsy9_cBlzDXpv5hjCOmU__h4O0U4Pobij7T5Ad98ufi0vF9e336-W59cLw6iSC2t71grObCsN7yS3gjTMENbwDhRzHaHCtBzUighKGqMMa1dNrwgQulLE2vYAHc-9Dzn9nVwZ9eCLcSFAdGkqun5NZdcIJSr69Q16n6ZcPy66IdUqI7JjlTqZKZNTKdn1-iH7AfJGU6L_yddVvn6RX9kv28ZpNTj7Sv63XYGzGXjywW3eb9LnNz_nymfx-Y3w</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Foo, Elizabeth</creator><creator>Turner, Robin</creator><creator>Wang, Kuan‐Chi</creator><creator>Aniss, Adam</creator><creator>Gill, Anthony J.</creator><creator>Sidhu, Stanley</creator><creator>Clifton‐Bligh, Roderick</creator><creator>Sywak, Mark</creator><general>John Wiley &amp; Sons Australia, Ltd</general><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201803</creationdate><title>Predicting malignancy in adrenal incidentaloma and evaluation of a novel risk stratification algorithm</title><author>Foo, Elizabeth ; Turner, Robin ; Wang, Kuan‐Chi ; Aniss, Adam ; Gill, Anthony J. ; Sidhu, Stanley ; Clifton‐Bligh, Roderick ; Sywak, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4198-ddf43764d38c6586d7024c04265a94e5017c36a9b07102c9c43b2f90a01b90dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adrenal Gland Neoplasms - diagnostic imaging</topic><topic>Adrenal Gland Neoplasms - pathology</topic><topic>adrenal incidentaloma</topic><topic>Adrenalectomy</topic><topic>adrenocortical carcinoma</topic><topic>Adult</topic><topic>Aged</topic><topic>Algorithms</topic><topic>Computed tomography</topic><topic>Confidence intervals</topic><topic>Cortisol</topic><topic>Dehydroepiandrosterone</topic><topic>Demographics</topic><topic>Demography</topic><topic>Density</topic><topic>Evaluation</topic><topic>Female</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>laparoscopic adrenalectomy</topic><topic>Lesions</topic><topic>Male</topic><topic>Malignancy</topic><topic>Middle Aged</topic><topic>Neuroendocrine tumors</topic><topic>Patients</topic><topic>Predictive Value of Tests</topic><topic>Reproducibility of Results</topic><topic>Retrospective Studies</topic><topic>Risk</topic><topic>Risk Assessment</topic><topic>Tomography, X-Ray Computed</topic><topic>Tumor Burden</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Foo, Elizabeth</creatorcontrib><creatorcontrib>Turner, Robin</creatorcontrib><creatorcontrib>Wang, Kuan‐Chi</creatorcontrib><creatorcontrib>Aniss, Adam</creatorcontrib><creatorcontrib>Gill, Anthony J.</creatorcontrib><creatorcontrib>Sidhu, Stanley</creatorcontrib><creatorcontrib>Clifton‐Bligh, Roderick</creatorcontrib><creatorcontrib>Sywak, Mark</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>ANZ journal of surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Foo, Elizabeth</au><au>Turner, Robin</au><au>Wang, Kuan‐Chi</au><au>Aniss, Adam</au><au>Gill, Anthony J.</au><au>Sidhu, Stanley</au><au>Clifton‐Bligh, Roderick</au><au>Sywak, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting malignancy in adrenal incidentaloma and evaluation of a novel risk stratification algorithm</atitle><jtitle>ANZ journal of surgery</jtitle><addtitle>ANZ J Surg</addtitle><date>2018-03</date><risdate>2018</risdate><volume>88</volume><issue>3</issue><spage>E173</spage><epage>E177</epage><pages>E173-E177</pages><issn>1445-1433</issn><eissn>1445-2197</eissn><abstract>Background Incidentally discovered adrenal lesions known as adrenal incidentalomas (AI) are being encountered with increasing frequency due to the widespread use of abdominal computed tomography (CT). The aim of this study was to identify the clinical predictors of malignancy in AI and to evaluate the accuracy of a recently proposed risk stratification algorithm. Methods A retrospective analysis of 96 patients presenting with AI between 2004 and 2014 was undertaken; 66 patients underwent adrenalectomy, and 30 were managed non‐operatively. Univariate analysis including patient demographics, CT features of tumour size, density and heterogeneity was performed. Hormonal parameters including 24‐h urinary‐free cortisol and serum dehydroepiandrosterone sulphate (DHEAS) were also included. A Cleveland Clinic risk stratification model utilizing adrenal size and density was evaluated. Results The overall rate of malignancy was 8%. On univariate analysis, the following preoperative variables were predictive of malignancy – tumour size on pathology (P = 0.0031) and CT (P = 0.0016), heterogeneity on CT imaging (P = 0.0036), a relative percentage washout of less than 40% (P = 0.0178), elevated 24‐h urinary‐free cortisol levels (P = 0.0176), elevated DHEAs (P = 0.0061) and younger age at presentation (P &lt; 0.0001). Evaluation of the Cleveland Clinic algorithm found an area under the receiver operating characteristic curve of 0.81 (95% confidence interval 0.52–1.00). Conclusion CT characteristics of tumour size, density and heterogeneity are significantly associated with malignancy in AI and applied together reliably exclude malignancy. The risk stratification algorithm utilizing size and density alone may fail to identify some smaller adrenal cancers.</abstract><cop>Melbourne</cop><pub>John Wiley &amp; Sons Australia, Ltd</pub><pmid>28118677</pmid><doi>10.1111/ans.13868</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1445-1433
ispartof ANZ journal of surgery, 2018-03, Vol.88 (3), p.E173-E177
issn 1445-1433
1445-2197
language eng
recordid cdi_proquest_miscellaneous_1861852797
source MEDLINE; Wiley Online Library
subjects Adrenal Gland Neoplasms - diagnostic imaging
Adrenal Gland Neoplasms - pathology
adrenal incidentaloma
Adrenalectomy
adrenocortical carcinoma
Adult
Aged
Algorithms
Computed tomography
Confidence intervals
Cortisol
Dehydroepiandrosterone
Demographics
Demography
Density
Evaluation
Female
Heterogeneity
Humans
laparoscopic adrenalectomy
Lesions
Male
Malignancy
Middle Aged
Neuroendocrine tumors
Patients
Predictive Value of Tests
Reproducibility of Results
Retrospective Studies
Risk
Risk Assessment
Tomography, X-Ray Computed
Tumor Burden
Tumors
title Predicting malignancy in adrenal incidentaloma and evaluation of a novel risk stratification algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A47%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20malignancy%20in%20adrenal%20incidentaloma%20and%20evaluation%20of%20a%20novel%20risk%20stratification%20algorithm&rft.jtitle=ANZ%20journal%20of%20surgery&rft.au=Foo,%20Elizabeth&rft.date=2018-03&rft.volume=88&rft.issue=3&rft.spage=E173&rft.epage=E177&rft.pages=E173-E177&rft.issn=1445-1433&rft.eissn=1445-2197&rft_id=info:doi/10.1111/ans.13868&rft_dat=%3Cproquest_cross%3E2011140854%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2011140854&rft_id=info:pmid/28118677&rfr_iscdi=true