Singly and Doubly Occupied Higher Quantum States in Nanocrystals

Filling the lowest quantum state of the conduction band of colloidal nanocrystals with a single electron, which is analogous to the filling the lowest unoccupied molecular orbital in a molecule with a single electron, has attracted much attention due to the possibility of harnessing the electron spi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2017-02, Vol.17 (2), p.1187-1193
Hauptverfasser: Jeong, Juyeon, Yoon, Bitna, Kwon, Young-Wan, Choi, Dongsun, Jeong, Kwang Seob
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1193
container_issue 2
container_start_page 1187
container_title Nano letters
container_volume 17
creator Jeong, Juyeon
Yoon, Bitna
Kwon, Young-Wan
Choi, Dongsun
Jeong, Kwang Seob
description Filling the lowest quantum state of the conduction band of colloidal nanocrystals with a single electron, which is analogous to the filling the lowest unoccupied molecular orbital in a molecule with a single electron, has attracted much attention due to the possibility of harnessing the electron spin for potential spin-based applications. The quantized energy levels of the artificial atom, in principle, make it possible for a nanocrystal to be filled with an electron if the Fermi-energy level is optimally tuned during the nanocrystal growth. Here, we report the singly occupied quantum state (SOQS) and doubly occupied quantum state (DOQS) of a colloidal nanocrystal in steady state under ambient conditions. The number of electrons occupying the lowest quantum state can be controlled to be zero, one (unpaired), and two (paired) depending on the nanocrystal growth time via changing the stoichiometry of the nanocrystal. Electron paramagnetic resonance spectroscopy proved the nanocrystals with single electron to show superparamagnetic behavior, which is a direct evidence of the SOQS, whereas the DOQS of the two- or zero-electron occupied nanocrystals in the 1Se exhibit diamagnetic behavior. In combination with the superconducting quantum interference device measurement, it turns out that the SOQS of the HgSe colloidal quantum dots has superparamagnetic property. The appearance and change of the steady-state mid-IR intraband absorption spectrum reflect the sequential occupation of the 1Se state with electrons. The magnetic property of the colloidal quantum dot, initially determined by the chemical synthesis, can be tuned from diamagnetic to superparamagnetic and vice versa by varying the number of electrons through postchemical treatment. The switchable magnetic property will be very useful for further applications such as colloidal nanocrystal based spintronics, nonvolatile memory, infrared optoelectronics, catalyst, imaging, and quantum computing.
doi_str_mv 10.1021/acs.nanolett.6b04915
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1861617386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1861617386</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-dba77d93c5d18dcea56475f68c6c9b19eadd8ed07b55752cca83f89153831f593</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EoqXwBghlZEmx49ixN1C5FKmiQoXZcmynpEqd4svQt8dVLyPT-Yf_ovMBcIvgGMECPUjlx1bavjMhjGkNS47IGRgigmFOOS_OT5qVA3Dl_QpCyDGBl2BQMIQKXhZD8Lho7bLbZtLq7LmPdZJzpeKmNTqbtssf47LPKG2I62wRZDA-a232kWaV2_ogO38NLpp0zM3hjsD368vXZJrP5m_vk6dZLnHJQq5rWVWaY0U0YloZSWhZkYYyRRWvETdSa2Y0rGpCKlIoJRluWHoJM4wawvEI3O97N67_jcYHsW69Ml0nremjF4hRRFGFGU3Wcm9VrvfemUZsXLuWbisQFDt2IrETR3biwC7F7g4LsV4bfQodYSUD3Bt28VUfnU0P_9_5B80sfoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1861617386</pqid></control><display><type>article</type><title>Singly and Doubly Occupied Higher Quantum States in Nanocrystals</title><source>American Chemical Society Journals</source><creator>Jeong, Juyeon ; Yoon, Bitna ; Kwon, Young-Wan ; Choi, Dongsun ; Jeong, Kwang Seob</creator><creatorcontrib>Jeong, Juyeon ; Yoon, Bitna ; Kwon, Young-Wan ; Choi, Dongsun ; Jeong, Kwang Seob</creatorcontrib><description>Filling the lowest quantum state of the conduction band of colloidal nanocrystals with a single electron, which is analogous to the filling the lowest unoccupied molecular orbital in a molecule with a single electron, has attracted much attention due to the possibility of harnessing the electron spin for potential spin-based applications. The quantized energy levels of the artificial atom, in principle, make it possible for a nanocrystal to be filled with an electron if the Fermi-energy level is optimally tuned during the nanocrystal growth. Here, we report the singly occupied quantum state (SOQS) and doubly occupied quantum state (DOQS) of a colloidal nanocrystal in steady state under ambient conditions. The number of electrons occupying the lowest quantum state can be controlled to be zero, one (unpaired), and two (paired) depending on the nanocrystal growth time via changing the stoichiometry of the nanocrystal. Electron paramagnetic resonance spectroscopy proved the nanocrystals with single electron to show superparamagnetic behavior, which is a direct evidence of the SOQS, whereas the DOQS of the two- or zero-electron occupied nanocrystals in the 1Se exhibit diamagnetic behavior. In combination with the superconducting quantum interference device measurement, it turns out that the SOQS of the HgSe colloidal quantum dots has superparamagnetic property. The appearance and change of the steady-state mid-IR intraband absorption spectrum reflect the sequential occupation of the 1Se state with electrons. The magnetic property of the colloidal quantum dot, initially determined by the chemical synthesis, can be tuned from diamagnetic to superparamagnetic and vice versa by varying the number of electrons through postchemical treatment. The switchable magnetic property will be very useful for further applications such as colloidal nanocrystal based spintronics, nonvolatile memory, infrared optoelectronics, catalyst, imaging, and quantum computing.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.6b04915</identifier><identifier>PMID: 28112942</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Nano letters, 2017-02, Vol.17 (2), p.1187-1193</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-dba77d93c5d18dcea56475f68c6c9b19eadd8ed07b55752cca83f89153831f593</citedby><cites>FETCH-LOGICAL-a348t-dba77d93c5d18dcea56475f68c6c9b19eadd8ed07b55752cca83f89153831f593</cites><orcidid>0000-0003-3246-7599</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.6b04915$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.6b04915$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28112942$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jeong, Juyeon</creatorcontrib><creatorcontrib>Yoon, Bitna</creatorcontrib><creatorcontrib>Kwon, Young-Wan</creatorcontrib><creatorcontrib>Choi, Dongsun</creatorcontrib><creatorcontrib>Jeong, Kwang Seob</creatorcontrib><title>Singly and Doubly Occupied Higher Quantum States in Nanocrystals</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Filling the lowest quantum state of the conduction band of colloidal nanocrystals with a single electron, which is analogous to the filling the lowest unoccupied molecular orbital in a molecule with a single electron, has attracted much attention due to the possibility of harnessing the electron spin for potential spin-based applications. The quantized energy levels of the artificial atom, in principle, make it possible for a nanocrystal to be filled with an electron if the Fermi-energy level is optimally tuned during the nanocrystal growth. Here, we report the singly occupied quantum state (SOQS) and doubly occupied quantum state (DOQS) of a colloidal nanocrystal in steady state under ambient conditions. The number of electrons occupying the lowest quantum state can be controlled to be zero, one (unpaired), and two (paired) depending on the nanocrystal growth time via changing the stoichiometry of the nanocrystal. Electron paramagnetic resonance spectroscopy proved the nanocrystals with single electron to show superparamagnetic behavior, which is a direct evidence of the SOQS, whereas the DOQS of the two- or zero-electron occupied nanocrystals in the 1Se exhibit diamagnetic behavior. In combination with the superconducting quantum interference device measurement, it turns out that the SOQS of the HgSe colloidal quantum dots has superparamagnetic property. The appearance and change of the steady-state mid-IR intraband absorption spectrum reflect the sequential occupation of the 1Se state with electrons. The magnetic property of the colloidal quantum dot, initially determined by the chemical synthesis, can be tuned from diamagnetic to superparamagnetic and vice versa by varying the number of electrons through postchemical treatment. The switchable magnetic property will be very useful for further applications such as colloidal nanocrystal based spintronics, nonvolatile memory, infrared optoelectronics, catalyst, imaging, and quantum computing.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhi0EoqXwBghlZEmx49ixN1C5FKmiQoXZcmynpEqd4svQt8dVLyPT-Yf_ovMBcIvgGMECPUjlx1bavjMhjGkNS47IGRgigmFOOS_OT5qVA3Dl_QpCyDGBl2BQMIQKXhZD8Lho7bLbZtLq7LmPdZJzpeKmNTqbtssf47LPKG2I62wRZDA-a232kWaV2_ogO38NLpp0zM3hjsD368vXZJrP5m_vk6dZLnHJQq5rWVWaY0U0YloZSWhZkYYyRRWvETdSa2Y0rGpCKlIoJRluWHoJM4wawvEI3O97N67_jcYHsW69Ml0nremjF4hRRFGFGU3Wcm9VrvfemUZsXLuWbisQFDt2IrETR3biwC7F7g4LsV4bfQodYSUD3Bt28VUfnU0P_9_5B80sfoQ</recordid><startdate>20170208</startdate><enddate>20170208</enddate><creator>Jeong, Juyeon</creator><creator>Yoon, Bitna</creator><creator>Kwon, Young-Wan</creator><creator>Choi, Dongsun</creator><creator>Jeong, Kwang Seob</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3246-7599</orcidid></search><sort><creationdate>20170208</creationdate><title>Singly and Doubly Occupied Higher Quantum States in Nanocrystals</title><author>Jeong, Juyeon ; Yoon, Bitna ; Kwon, Young-Wan ; Choi, Dongsun ; Jeong, Kwang Seob</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-dba77d93c5d18dcea56475f68c6c9b19eadd8ed07b55752cca83f89153831f593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeong, Juyeon</creatorcontrib><creatorcontrib>Yoon, Bitna</creatorcontrib><creatorcontrib>Kwon, Young-Wan</creatorcontrib><creatorcontrib>Choi, Dongsun</creatorcontrib><creatorcontrib>Jeong, Kwang Seob</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeong, Juyeon</au><au>Yoon, Bitna</au><au>Kwon, Young-Wan</au><au>Choi, Dongsun</au><au>Jeong, Kwang Seob</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Singly and Doubly Occupied Higher Quantum States in Nanocrystals</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2017-02-08</date><risdate>2017</risdate><volume>17</volume><issue>2</issue><spage>1187</spage><epage>1193</epage><pages>1187-1193</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Filling the lowest quantum state of the conduction band of colloidal nanocrystals with a single electron, which is analogous to the filling the lowest unoccupied molecular orbital in a molecule with a single electron, has attracted much attention due to the possibility of harnessing the electron spin for potential spin-based applications. The quantized energy levels of the artificial atom, in principle, make it possible for a nanocrystal to be filled with an electron if the Fermi-energy level is optimally tuned during the nanocrystal growth. Here, we report the singly occupied quantum state (SOQS) and doubly occupied quantum state (DOQS) of a colloidal nanocrystal in steady state under ambient conditions. The number of electrons occupying the lowest quantum state can be controlled to be zero, one (unpaired), and two (paired) depending on the nanocrystal growth time via changing the stoichiometry of the nanocrystal. Electron paramagnetic resonance spectroscopy proved the nanocrystals with single electron to show superparamagnetic behavior, which is a direct evidence of the SOQS, whereas the DOQS of the two- or zero-electron occupied nanocrystals in the 1Se exhibit diamagnetic behavior. In combination with the superconducting quantum interference device measurement, it turns out that the SOQS of the HgSe colloidal quantum dots has superparamagnetic property. The appearance and change of the steady-state mid-IR intraband absorption spectrum reflect the sequential occupation of the 1Se state with electrons. The magnetic property of the colloidal quantum dot, initially determined by the chemical synthesis, can be tuned from diamagnetic to superparamagnetic and vice versa by varying the number of electrons through postchemical treatment. The switchable magnetic property will be very useful for further applications such as colloidal nanocrystal based spintronics, nonvolatile memory, infrared optoelectronics, catalyst, imaging, and quantum computing.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28112942</pmid><doi>10.1021/acs.nanolett.6b04915</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3246-7599</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2017-02, Vol.17 (2), p.1187-1193
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_1861617386
source American Chemical Society Journals
title Singly and Doubly Occupied Higher Quantum States in Nanocrystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T10%3A20%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Singly%20and%20Doubly%20Occupied%20Higher%20Quantum%20States%20in%20Nanocrystals&rft.jtitle=Nano%20letters&rft.au=Jeong,%20Juyeon&rft.date=2017-02-08&rft.volume=17&rft.issue=2&rft.spage=1187&rft.epage=1193&rft.pages=1187-1193&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.6b04915&rft_dat=%3Cproquest_cross%3E1861617386%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1861617386&rft_id=info:pmid/28112942&rfr_iscdi=true