ORGM: Occlusion Relational Graphical Model for Human Pose Estimation

Articulated human pose estimation from monocular image is a challenging problem in computer vision. Occlusion is a main challenge for human pose estimation, which is largely ignored in popular tree structured models. The tree structured model is simple and convenient for exact inference, but short i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2017-02, Vol.26 (2), p.927-941
Hauptverfasser: Fu, Lianrui, Zhang, Junge, Huang, Kaiqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 941
container_issue 2
container_start_page 927
container_title IEEE transactions on image processing
container_volume 26
creator Fu, Lianrui
Zhang, Junge
Huang, Kaiqi
description Articulated human pose estimation from monocular image is a challenging problem in computer vision. Occlusion is a main challenge for human pose estimation, which is largely ignored in popular tree structured models. The tree structured model is simple and convenient for exact inference, but short in modeling the occlusion coherence especially in the case of self-occlusion. We propose an occlusion relational graphical model, which is able to model both self-occlusion and occlusion by the other objects simultaneously. The proposed model can encode the interactions between human body parts and objects, and enables it to learn occlusion coherence from data discriminatively. We evaluate our model on several public benchmarks for human pose estimation, including challenging subsets featuring significant occlusion. The experimental results show that our method is superior to the previous state-of-the-arts, and is robust to occlusion for 2D human pose estimation.
doi_str_mv 10.1109/TIP.2016.2639441
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1861614306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7782843</ieee_id><sourcerecordid>1861614306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-c465eadaefc601766ddb5e9663be1feab609f64b1441e8f0d14aa3eba0cd4e4e3</originalsourceid><addsrcrecordid>eNo9kEFPwkAQRjdGI4jeTUxMj15aZ7rbbevNIAIJBELwvNlup7GmpdhtD_57F0FO8yXzZjLzGLtHCBAhfd7O10EIKINQ8lQIvGBDTAX6ACK8dBmi2I9RpAN2Y-0XAIoI5TUbhAki5yiH7G21mS5fvJUxVW_LZudtqNKdC7rypq3ef5bGpWWTU-UVTevN-lrvvHVjyZvYrqz_2Ft2VejK0t2pjtjH-2Q7nvmL1XQ-fl34hidR5xshI9K5psJIwFjKPM8iSqXkGWFBOpOQFlJk6D6hpIAchdacMg0mFySIj9jTce--bb57sp2qS2uoqvSOmt4qTCRKFBykQ-GImraxtqVC7Vt3bfujENTBnXLu1MGdOrlzI4-n7X1WU34e-JflgIcjUBLRuR3HSZgIzn8BTw5yeQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1861614306</pqid></control><display><type>article</type><title>ORGM: Occlusion Relational Graphical Model for Human Pose Estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Fu, Lianrui ; Zhang, Junge ; Huang, Kaiqi</creator><creatorcontrib>Fu, Lianrui ; Zhang, Junge ; Huang, Kaiqi</creatorcontrib><description>Articulated human pose estimation from monocular image is a challenging problem in computer vision. Occlusion is a main challenge for human pose estimation, which is largely ignored in popular tree structured models. The tree structured model is simple and convenient for exact inference, but short in modeling the occlusion coherence especially in the case of self-occlusion. We propose an occlusion relational graphical model, which is able to model both self-occlusion and occlusion by the other objects simultaneously. The proposed model can encode the interactions between human body parts and objects, and enables it to learn occlusion coherence from data discriminatively. We evaluate our model on several public benchmarks for human pose estimation, including challenging subsets featuring significant occlusion. The experimental results show that our method is superior to the previous state-of-the-arts, and is robust to occlusion for 2D human pose estimation.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2016.2639441</identifier><identifier>PMID: 28113316</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Biological system modeling ; Cognition ; Coherence ; Computational modeling ; Data models ; graphical model ; Graphical models ; mixture ; Occlusion ; Pose estimation ; spacial relationship</subject><ispartof>IEEE transactions on image processing, 2017-02, Vol.26 (2), p.927-941</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-c465eadaefc601766ddb5e9663be1feab609f64b1441e8f0d14aa3eba0cd4e4e3</citedby><cites>FETCH-LOGICAL-c385t-c465eadaefc601766ddb5e9663be1feab609f64b1441e8f0d14aa3eba0cd4e4e3</cites><orcidid>0000-0002-2677-9273</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7782843$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7782843$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28113316$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, Lianrui</creatorcontrib><creatorcontrib>Zhang, Junge</creatorcontrib><creatorcontrib>Huang, Kaiqi</creatorcontrib><title>ORGM: Occlusion Relational Graphical Model for Human Pose Estimation</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Articulated human pose estimation from monocular image is a challenging problem in computer vision. Occlusion is a main challenge for human pose estimation, which is largely ignored in popular tree structured models. The tree structured model is simple and convenient for exact inference, but short in modeling the occlusion coherence especially in the case of self-occlusion. We propose an occlusion relational graphical model, which is able to model both self-occlusion and occlusion by the other objects simultaneously. The proposed model can encode the interactions between human body parts and objects, and enables it to learn occlusion coherence from data discriminatively. We evaluate our model on several public benchmarks for human pose estimation, including challenging subsets featuring significant occlusion. The experimental results show that our method is superior to the previous state-of-the-arts, and is robust to occlusion for 2D human pose estimation.</description><subject>Biological system modeling</subject><subject>Cognition</subject><subject>Coherence</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>graphical model</subject><subject>Graphical models</subject><subject>mixture</subject><subject>Occlusion</subject><subject>Pose estimation</subject><subject>spacial relationship</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFPwkAQRjdGI4jeTUxMj15aZ7rbbevNIAIJBELwvNlup7GmpdhtD_57F0FO8yXzZjLzGLtHCBAhfd7O10EIKINQ8lQIvGBDTAX6ACK8dBmi2I9RpAN2Y-0XAIoI5TUbhAki5yiH7G21mS5fvJUxVW_LZudtqNKdC7rypq3ef5bGpWWTU-UVTevN-lrvvHVjyZvYrqz_2Ft2VejK0t2pjtjH-2Q7nvmL1XQ-fl34hidR5xshI9K5psJIwFjKPM8iSqXkGWFBOpOQFlJk6D6hpIAchdacMg0mFySIj9jTce--bb57sp2qS2uoqvSOmt4qTCRKFBykQ-GImraxtqVC7Vt3bfujENTBnXLu1MGdOrlzI4-n7X1WU34e-JflgIcjUBLRuR3HSZgIzn8BTw5yeQ</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Fu, Lianrui</creator><creator>Zhang, Junge</creator><creator>Huang, Kaiqi</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2677-9273</orcidid></search><sort><creationdate>201702</creationdate><title>ORGM: Occlusion Relational Graphical Model for Human Pose Estimation</title><author>Fu, Lianrui ; Zhang, Junge ; Huang, Kaiqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-c465eadaefc601766ddb5e9663be1feab609f64b1441e8f0d14aa3eba0cd4e4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biological system modeling</topic><topic>Cognition</topic><topic>Coherence</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>graphical model</topic><topic>Graphical models</topic><topic>mixture</topic><topic>Occlusion</topic><topic>Pose estimation</topic><topic>spacial relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Lianrui</creatorcontrib><creatorcontrib>Zhang, Junge</creatorcontrib><creatorcontrib>Huang, Kaiqi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fu, Lianrui</au><au>Zhang, Junge</au><au>Huang, Kaiqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ORGM: Occlusion Relational Graphical Model for Human Pose Estimation</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2017-02</date><risdate>2017</risdate><volume>26</volume><issue>2</issue><spage>927</spage><epage>941</epage><pages>927-941</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Articulated human pose estimation from monocular image is a challenging problem in computer vision. Occlusion is a main challenge for human pose estimation, which is largely ignored in popular tree structured models. The tree structured model is simple and convenient for exact inference, but short in modeling the occlusion coherence especially in the case of self-occlusion. We propose an occlusion relational graphical model, which is able to model both self-occlusion and occlusion by the other objects simultaneously. The proposed model can encode the interactions between human body parts and objects, and enables it to learn occlusion coherence from data discriminatively. We evaluate our model on several public benchmarks for human pose estimation, including challenging subsets featuring significant occlusion. The experimental results show that our method is superior to the previous state-of-the-arts, and is robust to occlusion for 2D human pose estimation.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28113316</pmid><doi>10.1109/TIP.2016.2639441</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2677-9273</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2017-02, Vol.26 (2), p.927-941
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_miscellaneous_1861614306
source IEEE Electronic Library (IEL)
subjects Biological system modeling
Cognition
Coherence
Computational modeling
Data models
graphical model
Graphical models
mixture
Occlusion
Pose estimation
spacial relationship
title ORGM: Occlusion Relational Graphical Model for Human Pose Estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T03%3A13%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ORGM:%20Occlusion%20Relational%20Graphical%20Model%20for%20Human%20Pose%20Estimation&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Fu,%20Lianrui&rft.date=2017-02&rft.volume=26&rft.issue=2&rft.spage=927&rft.epage=941&rft.pages=927-941&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2016.2639441&rft_dat=%3Cproquest_RIE%3E1861614306%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1861614306&rft_id=info:pmid/28113316&rft_ieee_id=7782843&rfr_iscdi=true