Single Molecule Study of Force-Induced Rotation of Carbon–Carbon Double Bonds in Polymers

Carbon–carbon double bonds (CC) are ubiquitous in natural and synthetic polymers. In bulk studies, due to limited ways to control applied force, they are thought to be mechanically inert and not to contribute to the extensibility of polymers. Here, we report a single molecule force spectroscopy stu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2017-01, Vol.11 (1), p.194-203
Hauptverfasser: Huang, Wenmao, Zhu, Zhenshu, Wen, Jing, Wang, Xin, Qin, Meng, Cao, Yi, Ma, Haibo, Wang, Wei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 203
container_issue 1
container_start_page 194
container_title ACS nano
container_volume 11
creator Huang, Wenmao
Zhu, Zhenshu
Wen, Jing
Wang, Xin
Qin, Meng
Cao, Yi
Ma, Haibo
Wang, Wei
description Carbon–carbon double bonds (CC) are ubiquitous in natural and synthetic polymers. In bulk studies, due to limited ways to control applied force, they are thought to be mechanically inert and not to contribute to the extensibility of polymers. Here, we report a single molecule force spectroscopy study on a polymer containing CC bonds using atomic force microscope. Surprisingly, we found that it is possible to directly observe the cis-to-trans isomerization of CC bonds at the time scale of ∼1 ms at room temperature by applying a tensile force ∼1.7 nN. The reaction proceeds through a diradical intermediate state, as confirmed by both a free radical quenching experiment and quantum chemical modeling. The force-free activation length to convert the cis CC bonds to the transition state is ∼0.5 Å, indicating that the reaction rate is accelerated by ∼109 times at the transition force. On the basis of the density functional theory optimized structure, we propose that because the pulling direction is not parallel to CC double bonds in the polymer, stretching the polymer not only provides tension to lower the transition barrier but also provides torsion to facilitate the rotation of cis CC bonds. This explains the apparently low transition force for such thermally “forbidden” reactions and offers an additional explanation of the “lever-arm effect” of polymer backbones on the activation force for many mechanophores. This work demonstrates the importance of precisely controlling the force direction at the nanoscale to the force-activated reactions and may have many implications on the design of stress-responsive materials.
doi_str_mv 10.1021/acsnano.6b07119
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1861608685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1861608685</sourcerecordid><originalsourceid>FETCH-LOGICAL-a374t-74d46a74e3d2eba6fb87e9f3a6ca18a6ac3212f469c19d9726c413005c9565133</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhoMoTqdnb9KjIN36NW3SHnU6HUwUpyB4CGmaSkeXzKQ57OZ_8B_6S8xo3c1TXsjzvvA9CJ1BNIIohjEXVnGlR6SIKEC-h44gxySMMvK2v8spDNCxtcsoSmlGySEaxBlAQklyhN4XtfpoZPCgGymcD4vWlZtAV8FUGyHDmSqdkGXwrFve1lptfybcFFr9fH13IbjRrvDNa61KG9QqeNLNZiWNPUEHFW-sPO3fIXqd3r5M7sP5491scjUPOaZJG9KkTAinicRlLAtOqiKjMq8wJ4JDxgkXOIa4SkguIC9zGhORAPbHiDwlKWA8RBfd7troTydty1a1FbJpuJLaWQYZAeKVZKlHxx0qjLbWyIqtTb3iZsMgYlujrDfKeqO-cd6Pu2Ilyx3_p9ADlx3gm2ypnVH-1n_nfgECLYIE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1861608685</pqid></control><display><type>article</type><title>Single Molecule Study of Force-Induced Rotation of Carbon–Carbon Double Bonds in Polymers</title><source>ACS Publications</source><creator>Huang, Wenmao ; Zhu, Zhenshu ; Wen, Jing ; Wang, Xin ; Qin, Meng ; Cao, Yi ; Ma, Haibo ; Wang, Wei</creator><creatorcontrib>Huang, Wenmao ; Zhu, Zhenshu ; Wen, Jing ; Wang, Xin ; Qin, Meng ; Cao, Yi ; Ma, Haibo ; Wang, Wei</creatorcontrib><description>Carbon–carbon double bonds (CC) are ubiquitous in natural and synthetic polymers. In bulk studies, due to limited ways to control applied force, they are thought to be mechanically inert and not to contribute to the extensibility of polymers. Here, we report a single molecule force spectroscopy study on a polymer containing CC bonds using atomic force microscope. Surprisingly, we found that it is possible to directly observe the cis-to-trans isomerization of CC bonds at the time scale of ∼1 ms at room temperature by applying a tensile force ∼1.7 nN. The reaction proceeds through a diradical intermediate state, as confirmed by both a free radical quenching experiment and quantum chemical modeling. The force-free activation length to convert the cis CC bonds to the transition state is ∼0.5 Å, indicating that the reaction rate is accelerated by ∼109 times at the transition force. On the basis of the density functional theory optimized structure, we propose that because the pulling direction is not parallel to CC double bonds in the polymer, stretching the polymer not only provides tension to lower the transition barrier but also provides torsion to facilitate the rotation of cis CC bonds. This explains the apparently low transition force for such thermally “forbidden” reactions and offers an additional explanation of the “lever-arm effect” of polymer backbones on the activation force for many mechanophores. This work demonstrates the importance of precisely controlling the force direction at the nanoscale to the force-activated reactions and may have many implications on the design of stress-responsive materials.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.6b07119</identifier><identifier>PMID: 28114764</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2017-01, Vol.11 (1), p.194-203</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a374t-74d46a74e3d2eba6fb87e9f3a6ca18a6ac3212f469c19d9726c413005c9565133</citedby><cites>FETCH-LOGICAL-a374t-74d46a74e3d2eba6fb87e9f3a6ca18a6ac3212f469c19d9726c413005c9565133</cites><orcidid>0000-0001-7915-3429 ; 0000-0003-1493-7868</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.6b07119$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.6b07119$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27080,27928,27929,56742,56792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28114764$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Wenmao</creatorcontrib><creatorcontrib>Zhu, Zhenshu</creatorcontrib><creatorcontrib>Wen, Jing</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Qin, Meng</creatorcontrib><creatorcontrib>Cao, Yi</creatorcontrib><creatorcontrib>Ma, Haibo</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><title>Single Molecule Study of Force-Induced Rotation of Carbon–Carbon Double Bonds in Polymers</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Carbon–carbon double bonds (CC) are ubiquitous in natural and synthetic polymers. In bulk studies, due to limited ways to control applied force, they are thought to be mechanically inert and not to contribute to the extensibility of polymers. Here, we report a single molecule force spectroscopy study on a polymer containing CC bonds using atomic force microscope. Surprisingly, we found that it is possible to directly observe the cis-to-trans isomerization of CC bonds at the time scale of ∼1 ms at room temperature by applying a tensile force ∼1.7 nN. The reaction proceeds through a diradical intermediate state, as confirmed by both a free radical quenching experiment and quantum chemical modeling. The force-free activation length to convert the cis CC bonds to the transition state is ∼0.5 Å, indicating that the reaction rate is accelerated by ∼109 times at the transition force. On the basis of the density functional theory optimized structure, we propose that because the pulling direction is not parallel to CC double bonds in the polymer, stretching the polymer not only provides tension to lower the transition barrier but also provides torsion to facilitate the rotation of cis CC bonds. This explains the apparently low transition force for such thermally “forbidden” reactions and offers an additional explanation of the “lever-arm effect” of polymer backbones on the activation force for many mechanophores. This work demonstrates the importance of precisely controlling the force direction at the nanoscale to the force-activated reactions and may have many implications on the design of stress-responsive materials.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLwzAYhoMoTqdnb9KjIN36NW3SHnU6HUwUpyB4CGmaSkeXzKQ57OZ_8B_6S8xo3c1TXsjzvvA9CJ1BNIIohjEXVnGlR6SIKEC-h44gxySMMvK2v8spDNCxtcsoSmlGySEaxBlAQklyhN4XtfpoZPCgGymcD4vWlZtAV8FUGyHDmSqdkGXwrFve1lptfybcFFr9fH13IbjRrvDNa61KG9QqeNLNZiWNPUEHFW-sPO3fIXqd3r5M7sP5491scjUPOaZJG9KkTAinicRlLAtOqiKjMq8wJ4JDxgkXOIa4SkguIC9zGhORAPbHiDwlKWA8RBfd7troTydty1a1FbJpuJLaWQYZAeKVZKlHxx0qjLbWyIqtTb3iZsMgYlujrDfKeqO-cd6Pu2Ilyx3_p9ADlx3gm2ypnVH-1n_nfgECLYIE</recordid><startdate>20170124</startdate><enddate>20170124</enddate><creator>Huang, Wenmao</creator><creator>Zhu, Zhenshu</creator><creator>Wen, Jing</creator><creator>Wang, Xin</creator><creator>Qin, Meng</creator><creator>Cao, Yi</creator><creator>Ma, Haibo</creator><creator>Wang, Wei</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7915-3429</orcidid><orcidid>https://orcid.org/0000-0003-1493-7868</orcidid></search><sort><creationdate>20170124</creationdate><title>Single Molecule Study of Force-Induced Rotation of Carbon–Carbon Double Bonds in Polymers</title><author>Huang, Wenmao ; Zhu, Zhenshu ; Wen, Jing ; Wang, Xin ; Qin, Meng ; Cao, Yi ; Ma, Haibo ; Wang, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a374t-74d46a74e3d2eba6fb87e9f3a6ca18a6ac3212f469c19d9726c413005c9565133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Wenmao</creatorcontrib><creatorcontrib>Zhu, Zhenshu</creatorcontrib><creatorcontrib>Wen, Jing</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Qin, Meng</creatorcontrib><creatorcontrib>Cao, Yi</creatorcontrib><creatorcontrib>Ma, Haibo</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Wenmao</au><au>Zhu, Zhenshu</au><au>Wen, Jing</au><au>Wang, Xin</au><au>Qin, Meng</au><au>Cao, Yi</au><au>Ma, Haibo</au><au>Wang, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single Molecule Study of Force-Induced Rotation of Carbon–Carbon Double Bonds in Polymers</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2017-01-24</date><risdate>2017</risdate><volume>11</volume><issue>1</issue><spage>194</spage><epage>203</epage><pages>194-203</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Carbon–carbon double bonds (CC) are ubiquitous in natural and synthetic polymers. In bulk studies, due to limited ways to control applied force, they are thought to be mechanically inert and not to contribute to the extensibility of polymers. Here, we report a single molecule force spectroscopy study on a polymer containing CC bonds using atomic force microscope. Surprisingly, we found that it is possible to directly observe the cis-to-trans isomerization of CC bonds at the time scale of ∼1 ms at room temperature by applying a tensile force ∼1.7 nN. The reaction proceeds through a diradical intermediate state, as confirmed by both a free radical quenching experiment and quantum chemical modeling. The force-free activation length to convert the cis CC bonds to the transition state is ∼0.5 Å, indicating that the reaction rate is accelerated by ∼109 times at the transition force. On the basis of the density functional theory optimized structure, we propose that because the pulling direction is not parallel to CC double bonds in the polymer, stretching the polymer not only provides tension to lower the transition barrier but also provides torsion to facilitate the rotation of cis CC bonds. This explains the apparently low transition force for such thermally “forbidden” reactions and offers an additional explanation of the “lever-arm effect” of polymer backbones on the activation force for many mechanophores. This work demonstrates the importance of precisely controlling the force direction at the nanoscale to the force-activated reactions and may have many implications on the design of stress-responsive materials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28114764</pmid><doi>10.1021/acsnano.6b07119</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7915-3429</orcidid><orcidid>https://orcid.org/0000-0003-1493-7868</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2017-01, Vol.11 (1), p.194-203
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_1861608685
source ACS Publications
title Single Molecule Study of Force-Induced Rotation of Carbon–Carbon Double Bonds in Polymers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T02%3A56%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20Molecule%20Study%20of%20Force-Induced%20Rotation%20of%20Carbon%E2%80%93Carbon%20Double%20Bonds%20in%20Polymers&rft.jtitle=ACS%20nano&rft.au=Huang,%20Wenmao&rft.date=2017-01-24&rft.volume=11&rft.issue=1&rft.spage=194&rft.epage=203&rft.pages=194-203&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.6b07119&rft_dat=%3Cproquest_cross%3E1861608685%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1861608685&rft_id=info:pmid/28114764&rfr_iscdi=true