Molecular mechanisms involved in gliomagenesis

The application of molecular parameters in the World Health Organization classification of central nervous system tumors has advanced remarkably in this field. Large-scale genomic DNA analyses, including gene expression profiling, genome-wide association studies, and single-nucleotide polymorphism a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain tumor pathology 2017, Vol.34 (1), p.1-7
1. Verfasser: Kondo, Toru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue 1
container_start_page 1
container_title Brain tumor pathology
container_volume 34
creator Kondo, Toru
description The application of molecular parameters in the World Health Organization classification of central nervous system tumors has advanced remarkably in this field. Large-scale genomic DNA analyses, including gene expression profiling, genome-wide association studies, and single-nucleotide polymorphism analysis, have revealed differences between tumors with the same pathological features. Because mutated genes and their signaling pathways can be targets for therapy, categorizing tumors by molecular parameters facilitates the selection of optimal therapeutic methods. Many genes are either oncogenes or tumor suppressor genes, and many of them are also involved in normal development, such as neural stem cell maintenance and neural differentiation. Moreover, genetic engineering has enabled the generation of tumors that phenocopy human tumors in mice. Here, I will discuss key molecular parameters, mechanisms of neural differentiation, isocitrate dehydrogenases, 1p36/19q13, and p53 in gliomagenesis. Because future therapeutic methods will be determined by the molecular mechanisms of tumors, identification of new parameters is still needed for further classification of glioma.
doi_str_mv 10.1007/s10014-017-0278-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1861605819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1861605819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-c5b4dd58af4aec181da39b91dbf68c7fad65a648fb183fc5b4c40102dc6c9a4e3</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMotlYfwI0U3LhJzZlkcllK8QYVNwruQibJ1ClzqUmn4NuboVVBcJMcON_5k_MhdA5kBoSI65hOYJiAwCQTEssDNAbJAVMp3g5TzSjFgio5QicxrghhjAg4RqNMAvCcyjGaPXW1t31twrTx9t20VWzitGq3Xb31LhXTZV11jVn61scqnqKj0tTRn-3vCXq9u32ZP-DF8_3j_GaBLVV8g21eMOdyaUpmvAUJzlBVKHBFyaUVpXE8N5zJsgBJy4G2jADJnOVWGebpBF3tcteh--h93OimitbXtWl910c9bMlJLkEl9PIPuur60Kbf6UyBJCrjgiYKdpQNXYzBl3odqsaETw1EDzL1TqZOMvUgU8s0c7FP7ovGu5-Jb3sJyHZATK126cPv0_-nfgHjGH7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918092673</pqid></control><display><type>article</type><title>Molecular mechanisms involved in gliomagenesis</title><source>MEDLINE</source><source>ProQuest Central (Alumni Edition)</source><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Kondo, Toru</creator><creatorcontrib>Kondo, Toru</creatorcontrib><description>The application of molecular parameters in the World Health Organization classification of central nervous system tumors has advanced remarkably in this field. Large-scale genomic DNA analyses, including gene expression profiling, genome-wide association studies, and single-nucleotide polymorphism analysis, have revealed differences between tumors with the same pathological features. Because mutated genes and their signaling pathways can be targets for therapy, categorizing tumors by molecular parameters facilitates the selection of optimal therapeutic methods. Many genes are either oncogenes or tumor suppressor genes, and many of them are also involved in normal development, such as neural stem cell maintenance and neural differentiation. Moreover, genetic engineering has enabled the generation of tumors that phenocopy human tumors in mice. Here, I will discuss key molecular parameters, mechanisms of neural differentiation, isocitrate dehydrogenases, 1p36/19q13, and p53 in gliomagenesis. Because future therapeutic methods will be determined by the molecular mechanisms of tumors, identification of new parameters is still needed for further classification of glioma.</description><identifier>ISSN: 1433-7398</identifier><identifier>EISSN: 1861-387X</identifier><identifier>DOI: 10.1007/s10014-017-0278-8</identifier><identifier>PMID: 28116538</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Animals ; Apoptosis ; Brain cancer ; Brain Neoplasms - diagnosis ; Brain Neoplasms - genetics ; Brain Neoplasms - pathology ; Cancer Research ; Cell cycle ; Chromosomes ; Collagen ; Cyclin-dependent kinases ; DNA damage ; DNA methylation ; Gene expression ; Gene Expression Profiling ; Genome-Wide Association Study ; Genomes ; Glioma ; Glioma - diagnosis ; Glioma - genetics ; Glioma - pathology ; Growth factors ; Humans ; Hypoxia ; Kinases ; Leukemia ; Medicine ; Medicine &amp; Public Health ; Mutation ; Mutation - genetics ; Neurology ; Neurosurgery ; Oncology ; Pathology ; Phosphorylation ; Review Article ; Senescence ; Signal Transduction - genetics ; Stem cells ; Transcription factors ; Tumorigenesis ; Tumors</subject><ispartof>Brain tumor pathology, 2017, Vol.34 (1), p.1-7</ispartof><rights>The Japan Society of Brain Tumor Pathology 2017</rights><rights>The Japan Society of Brain Tumor Pathology 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-c5b4dd58af4aec181da39b91dbf68c7fad65a648fb183fc5b4c40102dc6c9a4e3</citedby><cites>FETCH-LOGICAL-c396t-c5b4dd58af4aec181da39b91dbf68c7fad65a648fb183fc5b4c40102dc6c9a4e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10014-017-0278-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918092673?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,781,785,21390,21391,27926,27927,33532,33533,33746,33747,41490,42559,43661,43807,51321,64387,64389,64391,72471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28116538$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kondo, Toru</creatorcontrib><title>Molecular mechanisms involved in gliomagenesis</title><title>Brain tumor pathology</title><addtitle>Brain Tumor Pathol</addtitle><addtitle>Brain Tumor Pathol</addtitle><description>The application of molecular parameters in the World Health Organization classification of central nervous system tumors has advanced remarkably in this field. Large-scale genomic DNA analyses, including gene expression profiling, genome-wide association studies, and single-nucleotide polymorphism analysis, have revealed differences between tumors with the same pathological features. Because mutated genes and their signaling pathways can be targets for therapy, categorizing tumors by molecular parameters facilitates the selection of optimal therapeutic methods. Many genes are either oncogenes or tumor suppressor genes, and many of them are also involved in normal development, such as neural stem cell maintenance and neural differentiation. Moreover, genetic engineering has enabled the generation of tumors that phenocopy human tumors in mice. Here, I will discuss key molecular parameters, mechanisms of neural differentiation, isocitrate dehydrogenases, 1p36/19q13, and p53 in gliomagenesis. Because future therapeutic methods will be determined by the molecular mechanisms of tumors, identification of new parameters is still needed for further classification of glioma.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Brain cancer</subject><subject>Brain Neoplasms - diagnosis</subject><subject>Brain Neoplasms - genetics</subject><subject>Brain Neoplasms - pathology</subject><subject>Cancer Research</subject><subject>Cell cycle</subject><subject>Chromosomes</subject><subject>Collagen</subject><subject>Cyclin-dependent kinases</subject><subject>DNA damage</subject><subject>DNA methylation</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Glioma</subject><subject>Glioma - diagnosis</subject><subject>Glioma - genetics</subject><subject>Glioma - pathology</subject><subject>Growth factors</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Kinases</subject><subject>Leukemia</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Neurology</subject><subject>Neurosurgery</subject><subject>Oncology</subject><subject>Pathology</subject><subject>Phosphorylation</subject><subject>Review Article</subject><subject>Senescence</subject><subject>Signal Transduction - genetics</subject><subject>Stem cells</subject><subject>Transcription factors</subject><subject>Tumorigenesis</subject><subject>Tumors</subject><issn>1433-7398</issn><issn>1861-387X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp1kMtKAzEUhoMotlYfwI0U3LhJzZlkcllK8QYVNwruQibJ1ClzqUmn4NuboVVBcJMcON_5k_MhdA5kBoSI65hOYJiAwCQTEssDNAbJAVMp3g5TzSjFgio5QicxrghhjAg4RqNMAvCcyjGaPXW1t31twrTx9t20VWzitGq3Xb31LhXTZV11jVn61scqnqKj0tTRn-3vCXq9u32ZP-DF8_3j_GaBLVV8g21eMOdyaUpmvAUJzlBVKHBFyaUVpXE8N5zJsgBJy4G2jADJnOVWGebpBF3tcteh--h93OimitbXtWl910c9bMlJLkEl9PIPuur60Kbf6UyBJCrjgiYKdpQNXYzBl3odqsaETw1EDzL1TqZOMvUgU8s0c7FP7ovGu5-Jb3sJyHZATK126cPv0_-nfgHjGH7g</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Kondo, Toru</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>7X8</scope></search><sort><creationdate>2017</creationdate><title>Molecular mechanisms involved in gliomagenesis</title><author>Kondo, Toru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-c5b4dd58af4aec181da39b91dbf68c7fad65a648fb183fc5b4c40102dc6c9a4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Brain cancer</topic><topic>Brain Neoplasms - diagnosis</topic><topic>Brain Neoplasms - genetics</topic><topic>Brain Neoplasms - pathology</topic><topic>Cancer Research</topic><topic>Cell cycle</topic><topic>Chromosomes</topic><topic>Collagen</topic><topic>Cyclin-dependent kinases</topic><topic>DNA damage</topic><topic>DNA methylation</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Glioma</topic><topic>Glioma - diagnosis</topic><topic>Glioma - genetics</topic><topic>Glioma - pathology</topic><topic>Growth factors</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Kinases</topic><topic>Leukemia</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Neurology</topic><topic>Neurosurgery</topic><topic>Oncology</topic><topic>Pathology</topic><topic>Phosphorylation</topic><topic>Review Article</topic><topic>Senescence</topic><topic>Signal Transduction - genetics</topic><topic>Stem cells</topic><topic>Transcription factors</topic><topic>Tumorigenesis</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kondo, Toru</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>MEDLINE - Academic</collection><jtitle>Brain tumor pathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kondo, Toru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular mechanisms involved in gliomagenesis</atitle><jtitle>Brain tumor pathology</jtitle><stitle>Brain Tumor Pathol</stitle><addtitle>Brain Tumor Pathol</addtitle><date>2017</date><risdate>2017</risdate><volume>34</volume><issue>1</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1433-7398</issn><eissn>1861-387X</eissn><abstract>The application of molecular parameters in the World Health Organization classification of central nervous system tumors has advanced remarkably in this field. Large-scale genomic DNA analyses, including gene expression profiling, genome-wide association studies, and single-nucleotide polymorphism analysis, have revealed differences between tumors with the same pathological features. Because mutated genes and their signaling pathways can be targets for therapy, categorizing tumors by molecular parameters facilitates the selection of optimal therapeutic methods. Many genes are either oncogenes or tumor suppressor genes, and many of them are also involved in normal development, such as neural stem cell maintenance and neural differentiation. Moreover, genetic engineering has enabled the generation of tumors that phenocopy human tumors in mice. Here, I will discuss key molecular parameters, mechanisms of neural differentiation, isocitrate dehydrogenases, 1p36/19q13, and p53 in gliomagenesis. Because future therapeutic methods will be determined by the molecular mechanisms of tumors, identification of new parameters is still needed for further classification of glioma.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><pmid>28116538</pmid><doi>10.1007/s10014-017-0278-8</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1433-7398
ispartof Brain tumor pathology, 2017, Vol.34 (1), p.1-7
issn 1433-7398
1861-387X
language eng
recordid cdi_proquest_miscellaneous_1861605819
source MEDLINE; ProQuest Central (Alumni Edition); SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Animals
Apoptosis
Brain cancer
Brain Neoplasms - diagnosis
Brain Neoplasms - genetics
Brain Neoplasms - pathology
Cancer Research
Cell cycle
Chromosomes
Collagen
Cyclin-dependent kinases
DNA damage
DNA methylation
Gene expression
Gene Expression Profiling
Genome-Wide Association Study
Genomes
Glioma
Glioma - diagnosis
Glioma - genetics
Glioma - pathology
Growth factors
Humans
Hypoxia
Kinases
Leukemia
Medicine
Medicine & Public Health
Mutation
Mutation - genetics
Neurology
Neurosurgery
Oncology
Pathology
Phosphorylation
Review Article
Senescence
Signal Transduction - genetics
Stem cells
Transcription factors
Tumorigenesis
Tumors
title Molecular mechanisms involved in gliomagenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A20%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20mechanisms%20involved%20in%20gliomagenesis&rft.jtitle=Brain%20tumor%20pathology&rft.au=Kondo,%20Toru&rft.date=2017&rft.volume=34&rft.issue=1&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1433-7398&rft.eissn=1861-387X&rft_id=info:doi/10.1007/s10014-017-0278-8&rft_dat=%3Cproquest_cross%3E1861605819%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918092673&rft_id=info:pmid/28116538&rfr_iscdi=true