Isomotive dielectrophoresis for parallel analysis of individual particles
Two dielectrophoresis systems are introduced where the induced dielectrophoretic force is constant throughout the experimental region, resulting in uniform (isomotive) microparticle translation. Isomotive dielectrophoresis (isoDEP) is accomplished through a unique geometry where the gradient of the...
Gespeichert in:
Veröffentlicht in: | Electrophoresis 2017-06, Vol.38 (11), p.1441-1449 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1449 |
---|---|
container_issue | 11 |
container_start_page | 1441 |
container_title | Electrophoresis |
container_volume | 38 |
creator | Allen, Daniel J. Accolla, Robert P. Williams, Stuart J. |
description | Two dielectrophoresis systems are introduced where the induced dielectrophoretic force is constant throughout the experimental region, resulting in uniform (isomotive) microparticle translation. Isomotive dielectrophoresis (isoDEP) is accomplished through a unique geometry where the gradient of the field‐squared (∇Erms2) is constant, a characteristic that is otherwise highly nonuniform in traditional DEP platforms. The governing isoDEP equations were derived herein and applied to two different isoDEP prototypes: (i) one fabricated from deep reactive ion etching (DRIE) of a conductive silicon wafer (1–10 Ω‐cm) whose patterned features served as electrodes and microchannel sidewalls simultaneously; (ii) a second where the electric field is applied lengthwise through a PDMS microchannel whose geometry follows a specific curvature. Both positive and negative dielectrophoresis was demonstrated with the isoDEP devices using silver‐coated hollow glass spheres and polystyrene particles, respectively. Particle tracking was used to compare particle trajectory with the expected dielectrophoretic response; further, particle velocity was used to measure the Clausius–Mossotti factor of individual polystyrene particles (18–24.9 μm) in both devices with a value of –0.40 ± 0.063 (n = 110) and –0.48 ± 0.055 (n = 18) for the DRIE and PDMS isoDEP platforms, respectively. The isoDEP platform is capable of analyzing multiple particles simultaneously, providing greater throughput than traditional electrorotation platforms. |
doi_str_mv | 10.1002/elps.201600517 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1861597221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1861597221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4718-6be7b4ea8fa690c72dda260ee2245c7c05eda5126b801c273da59b44ac826ea73</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMoun5cPUrBi5euk2mapEcRPxYWFNRzSdMpRrKbmmyV_fd2WfXgxdMwM8-8MA9jpxymHAAvyfdpisAlQMnVDpvwEjFHqYtdNgGuihx0UR6ww5TeAEBUQuyzA9Sco-BywmazFBZh5T4oax15sqsY-tcQKbmUdSFmvYnGe_KZWRq_3kxDl7ll6z5cOxi_2a-c9ZSO2V5nfKKT73rEXm5vnq_v8_nD3ez6ap5bobjOZUOqEWR0Z2QFVmHbGpRAhChKqyyU1JqSo2w0cIuqGLuqEcJYjZKMKo7YxTa3j-F9oLSqFy5Z8t4sKQyp5lryslKIfETP_6BvYYjjHyNVIQhVaISRmm4pG0NKkbq6j25h4rrmUG8k1xvJ9a_k8eDsO3ZoFtT-4j9WR0BsgU_naf1PXH0zf3ySUOniC5IFiFU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920473820</pqid></control><display><type>article</type><title>Isomotive dielectrophoresis for parallel analysis of individual particles</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Allen, Daniel J. ; Accolla, Robert P. ; Williams, Stuart J.</creator><creatorcontrib>Allen, Daniel J. ; Accolla, Robert P. ; Williams, Stuart J.</creatorcontrib><description>Two dielectrophoresis systems are introduced where the induced dielectrophoretic force is constant throughout the experimental region, resulting in uniform (isomotive) microparticle translation. Isomotive dielectrophoresis (isoDEP) is accomplished through a unique geometry where the gradient of the field‐squared (∇Erms2) is constant, a characteristic that is otherwise highly nonuniform in traditional DEP platforms. The governing isoDEP equations were derived herein and applied to two different isoDEP prototypes: (i) one fabricated from deep reactive ion etching (DRIE) of a conductive silicon wafer (1–10 Ω‐cm) whose patterned features served as electrodes and microchannel sidewalls simultaneously; (ii) a second where the electric field is applied lengthwise through a PDMS microchannel whose geometry follows a specific curvature. Both positive and negative dielectrophoresis was demonstrated with the isoDEP devices using silver‐coated hollow glass spheres and polystyrene particles, respectively. Particle tracking was used to compare particle trajectory with the expected dielectrophoretic response; further, particle velocity was used to measure the Clausius–Mossotti factor of individual polystyrene particles (18–24.9 μm) in both devices with a value of –0.40 ± 0.063 (n = 110) and –0.48 ± 0.055 (n = 18) for the DRIE and PDMS isoDEP platforms, respectively. The isoDEP platform is capable of analyzing multiple particles simultaneously, providing greater throughput than traditional electrorotation platforms.</description><identifier>ISSN: 0173-0835</identifier><identifier>EISSN: 1522-2683</identifier><identifier>DOI: 10.1002/elps.201600517</identifier><identifier>PMID: 28112416</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Atoms & subatomic particles ; Computer Simulation ; Curvature ; Devices ; Dielectric spectroscopy ; Dielectrophoresis ; Electrical resistivity ; Electroosmosis ; Electrophoresis, Microchip - instrumentation ; Electrophoresis, Microchip - methods ; Equipment Design - instrumentation ; Equipment Design - methods ; Ion etching ; Microelectrodes ; Microfluidics ; Models, Theoretical ; Particle Size ; Particle tracking ; Particle tracking velocimetry ; Platforms ; Polydimethylsiloxane ; Polystyrene resins ; Polystyrenes ; Prototypes ; Reactive ion etching ; Silicon ; Silicon wafers ; Silicone resins</subject><ispartof>Electrophoresis, 2017-06, Vol.38 (11), p.1441-1449</ispartof><rights>2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4718-6be7b4ea8fa690c72dda260ee2245c7c05eda5126b801c273da59b44ac826ea73</citedby><cites>FETCH-LOGICAL-c4718-6be7b4ea8fa690c72dda260ee2245c7c05eda5126b801c273da59b44ac826ea73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Felps.201600517$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Felps.201600517$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28112416$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Allen, Daniel J.</creatorcontrib><creatorcontrib>Accolla, Robert P.</creatorcontrib><creatorcontrib>Williams, Stuart J.</creatorcontrib><title>Isomotive dielectrophoresis for parallel analysis of individual particles</title><title>Electrophoresis</title><addtitle>Electrophoresis</addtitle><description>Two dielectrophoresis systems are introduced where the induced dielectrophoretic force is constant throughout the experimental region, resulting in uniform (isomotive) microparticle translation. Isomotive dielectrophoresis (isoDEP) is accomplished through a unique geometry where the gradient of the field‐squared (∇Erms2) is constant, a characteristic that is otherwise highly nonuniform in traditional DEP platforms. The governing isoDEP equations were derived herein and applied to two different isoDEP prototypes: (i) one fabricated from deep reactive ion etching (DRIE) of a conductive silicon wafer (1–10 Ω‐cm) whose patterned features served as electrodes and microchannel sidewalls simultaneously; (ii) a second where the electric field is applied lengthwise through a PDMS microchannel whose geometry follows a specific curvature. Both positive and negative dielectrophoresis was demonstrated with the isoDEP devices using silver‐coated hollow glass spheres and polystyrene particles, respectively. Particle tracking was used to compare particle trajectory with the expected dielectrophoretic response; further, particle velocity was used to measure the Clausius–Mossotti factor of individual polystyrene particles (18–24.9 μm) in both devices with a value of –0.40 ± 0.063 (n = 110) and –0.48 ± 0.055 (n = 18) for the DRIE and PDMS isoDEP platforms, respectively. The isoDEP platform is capable of analyzing multiple particles simultaneously, providing greater throughput than traditional electrorotation platforms.</description><subject>Atoms & subatomic particles</subject><subject>Computer Simulation</subject><subject>Curvature</subject><subject>Devices</subject><subject>Dielectric spectroscopy</subject><subject>Dielectrophoresis</subject><subject>Electrical resistivity</subject><subject>Electroosmosis</subject><subject>Electrophoresis, Microchip - instrumentation</subject><subject>Electrophoresis, Microchip - methods</subject><subject>Equipment Design - instrumentation</subject><subject>Equipment Design - methods</subject><subject>Ion etching</subject><subject>Microelectrodes</subject><subject>Microfluidics</subject><subject>Models, Theoretical</subject><subject>Particle Size</subject><subject>Particle tracking</subject><subject>Particle tracking velocimetry</subject><subject>Platforms</subject><subject>Polydimethylsiloxane</subject><subject>Polystyrene resins</subject><subject>Polystyrenes</subject><subject>Prototypes</subject><subject>Reactive ion etching</subject><subject>Silicon</subject><subject>Silicon wafers</subject><subject>Silicone resins</subject><issn>0173-0835</issn><issn>1522-2683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LxDAQhoMoun5cPUrBi5euk2mapEcRPxYWFNRzSdMpRrKbmmyV_fd2WfXgxdMwM8-8MA9jpxymHAAvyfdpisAlQMnVDpvwEjFHqYtdNgGuihx0UR6ww5TeAEBUQuyzA9Sco-BywmazFBZh5T4oax15sqsY-tcQKbmUdSFmvYnGe_KZWRq_3kxDl7ll6z5cOxi_2a-c9ZSO2V5nfKKT73rEXm5vnq_v8_nD3ez6ap5bobjOZUOqEWR0Z2QFVmHbGpRAhChKqyyU1JqSo2w0cIuqGLuqEcJYjZKMKo7YxTa3j-F9oLSqFy5Z8t4sKQyp5lryslKIfETP_6BvYYjjHyNVIQhVaISRmm4pG0NKkbq6j25h4rrmUG8k1xvJ9a_k8eDsO3ZoFtT-4j9WR0BsgU_naf1PXH0zf3ySUOniC5IFiFU</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Allen, Daniel J.</creator><creator>Accolla, Robert P.</creator><creator>Williams, Stuart J.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>201706</creationdate><title>Isomotive dielectrophoresis for parallel analysis of individual particles</title><author>Allen, Daniel J. ; Accolla, Robert P. ; Williams, Stuart J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4718-6be7b4ea8fa690c72dda260ee2245c7c05eda5126b801c273da59b44ac826ea73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Atoms & subatomic particles</topic><topic>Computer Simulation</topic><topic>Curvature</topic><topic>Devices</topic><topic>Dielectric spectroscopy</topic><topic>Dielectrophoresis</topic><topic>Electrical resistivity</topic><topic>Electroosmosis</topic><topic>Electrophoresis, Microchip - instrumentation</topic><topic>Electrophoresis, Microchip - methods</topic><topic>Equipment Design - instrumentation</topic><topic>Equipment Design - methods</topic><topic>Ion etching</topic><topic>Microelectrodes</topic><topic>Microfluidics</topic><topic>Models, Theoretical</topic><topic>Particle Size</topic><topic>Particle tracking</topic><topic>Particle tracking velocimetry</topic><topic>Platforms</topic><topic>Polydimethylsiloxane</topic><topic>Polystyrene resins</topic><topic>Polystyrenes</topic><topic>Prototypes</topic><topic>Reactive ion etching</topic><topic>Silicon</topic><topic>Silicon wafers</topic><topic>Silicone resins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Allen, Daniel J.</creatorcontrib><creatorcontrib>Accolla, Robert P.</creatorcontrib><creatorcontrib>Williams, Stuart J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Electrophoresis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Allen, Daniel J.</au><au>Accolla, Robert P.</au><au>Williams, Stuart J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isomotive dielectrophoresis for parallel analysis of individual particles</atitle><jtitle>Electrophoresis</jtitle><addtitle>Electrophoresis</addtitle><date>2017-06</date><risdate>2017</risdate><volume>38</volume><issue>11</issue><spage>1441</spage><epage>1449</epage><pages>1441-1449</pages><issn>0173-0835</issn><eissn>1522-2683</eissn><abstract>Two dielectrophoresis systems are introduced where the induced dielectrophoretic force is constant throughout the experimental region, resulting in uniform (isomotive) microparticle translation. Isomotive dielectrophoresis (isoDEP) is accomplished through a unique geometry where the gradient of the field‐squared (∇Erms2) is constant, a characteristic that is otherwise highly nonuniform in traditional DEP platforms. The governing isoDEP equations were derived herein and applied to two different isoDEP prototypes: (i) one fabricated from deep reactive ion etching (DRIE) of a conductive silicon wafer (1–10 Ω‐cm) whose patterned features served as electrodes and microchannel sidewalls simultaneously; (ii) a second where the electric field is applied lengthwise through a PDMS microchannel whose geometry follows a specific curvature. Both positive and negative dielectrophoresis was demonstrated with the isoDEP devices using silver‐coated hollow glass spheres and polystyrene particles, respectively. Particle tracking was used to compare particle trajectory with the expected dielectrophoretic response; further, particle velocity was used to measure the Clausius–Mossotti factor of individual polystyrene particles (18–24.9 μm) in both devices with a value of –0.40 ± 0.063 (n = 110) and –0.48 ± 0.055 (n = 18) for the DRIE and PDMS isoDEP platforms, respectively. The isoDEP platform is capable of analyzing multiple particles simultaneously, providing greater throughput than traditional electrorotation platforms.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28112416</pmid><doi>10.1002/elps.201600517</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0173-0835 |
ispartof | Electrophoresis, 2017-06, Vol.38 (11), p.1441-1449 |
issn | 0173-0835 1522-2683 |
language | eng |
recordid | cdi_proquest_miscellaneous_1861597221 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Atoms & subatomic particles Computer Simulation Curvature Devices Dielectric spectroscopy Dielectrophoresis Electrical resistivity Electroosmosis Electrophoresis, Microchip - instrumentation Electrophoresis, Microchip - methods Equipment Design - instrumentation Equipment Design - methods Ion etching Microelectrodes Microfluidics Models, Theoretical Particle Size Particle tracking Particle tracking velocimetry Platforms Polydimethylsiloxane Polystyrene resins Polystyrenes Prototypes Reactive ion etching Silicon Silicon wafers Silicone resins |
title | Isomotive dielectrophoresis for parallel analysis of individual particles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T04%3A25%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isomotive%20dielectrophoresis%20for%20parallel%20analysis%20of%20individual%20particles&rft.jtitle=Electrophoresis&rft.au=Allen,%20Daniel%20J.&rft.date=2017-06&rft.volume=38&rft.issue=11&rft.spage=1441&rft.epage=1449&rft.pages=1441-1449&rft.issn=0173-0835&rft.eissn=1522-2683&rft_id=info:doi/10.1002/elps.201600517&rft_dat=%3Cproquest_cross%3E1861597221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1920473820&rft_id=info:pmid/28112416&rfr_iscdi=true |