Isomotive dielectrophoresis for parallel analysis of individual particles

Two dielectrophoresis systems are introduced where the induced dielectrophoretic force is constant throughout the experimental region, resulting in uniform (isomotive) microparticle translation. Isomotive dielectrophoresis (isoDEP) is accomplished through a unique geometry where the gradient of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrophoresis 2017-06, Vol.38 (11), p.1441-1449
Hauptverfasser: Allen, Daniel J., Accolla, Robert P., Williams, Stuart J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1449
container_issue 11
container_start_page 1441
container_title Electrophoresis
container_volume 38
creator Allen, Daniel J.
Accolla, Robert P.
Williams, Stuart J.
description Two dielectrophoresis systems are introduced where the induced dielectrophoretic force is constant throughout the experimental region, resulting in uniform (isomotive) microparticle translation. Isomotive dielectrophoresis (isoDEP) is accomplished through a unique geometry where the gradient of the field‐squared (∇Erms2) is constant, a characteristic that is otherwise highly nonuniform in traditional DEP platforms. The governing isoDEP equations were derived herein and applied to two different isoDEP prototypes: (i) one fabricated from deep reactive ion etching (DRIE) of a conductive silicon wafer (1–10 Ω‐cm) whose patterned features served as electrodes and microchannel sidewalls simultaneously; (ii) a second where the electric field is applied lengthwise through a PDMS microchannel whose geometry follows a specific curvature. Both positive and negative dielectrophoresis was demonstrated with the isoDEP devices using silver‐coated hollow glass spheres and polystyrene particles, respectively. Particle tracking was used to compare particle trajectory with the expected dielectrophoretic response; further, particle velocity was used to measure the Clausius–Mossotti factor of individual polystyrene particles (18–24.9 μm) in both devices with a value of –0.40 ± 0.063 (n = 110) and –0.48 ± 0.055 (n = 18) for the DRIE and PDMS isoDEP platforms, respectively. The isoDEP platform is capable of analyzing multiple particles simultaneously, providing greater throughput than traditional electrorotation platforms.
doi_str_mv 10.1002/elps.201600517
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1861597221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1861597221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4718-6be7b4ea8fa690c72dda260ee2245c7c05eda5126b801c273da59b44ac826ea73</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMoun5cPUrBi5euk2mapEcRPxYWFNRzSdMpRrKbmmyV_fd2WfXgxdMwM8-8MA9jpxymHAAvyfdpisAlQMnVDpvwEjFHqYtdNgGuihx0UR6ww5TeAEBUQuyzA9Sco-BywmazFBZh5T4oax15sqsY-tcQKbmUdSFmvYnGe_KZWRq_3kxDl7ll6z5cOxi_2a-c9ZSO2V5nfKKT73rEXm5vnq_v8_nD3ez6ap5bobjOZUOqEWR0Z2QFVmHbGpRAhChKqyyU1JqSo2w0cIuqGLuqEcJYjZKMKo7YxTa3j-F9oLSqFy5Z8t4sKQyp5lryslKIfETP_6BvYYjjHyNVIQhVaISRmm4pG0NKkbq6j25h4rrmUG8k1xvJ9a_k8eDsO3ZoFtT-4j9WR0BsgU_naf1PXH0zf3ySUOniC5IFiFU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920473820</pqid></control><display><type>article</type><title>Isomotive dielectrophoresis for parallel analysis of individual particles</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Allen, Daniel J. ; Accolla, Robert P. ; Williams, Stuart J.</creator><creatorcontrib>Allen, Daniel J. ; Accolla, Robert P. ; Williams, Stuart J.</creatorcontrib><description>Two dielectrophoresis systems are introduced where the induced dielectrophoretic force is constant throughout the experimental region, resulting in uniform (isomotive) microparticle translation. Isomotive dielectrophoresis (isoDEP) is accomplished through a unique geometry where the gradient of the field‐squared (∇Erms2) is constant, a characteristic that is otherwise highly nonuniform in traditional DEP platforms. The governing isoDEP equations were derived herein and applied to two different isoDEP prototypes: (i) one fabricated from deep reactive ion etching (DRIE) of a conductive silicon wafer (1–10 Ω‐cm) whose patterned features served as electrodes and microchannel sidewalls simultaneously; (ii) a second where the electric field is applied lengthwise through a PDMS microchannel whose geometry follows a specific curvature. Both positive and negative dielectrophoresis was demonstrated with the isoDEP devices using silver‐coated hollow glass spheres and polystyrene particles, respectively. Particle tracking was used to compare particle trajectory with the expected dielectrophoretic response; further, particle velocity was used to measure the Clausius–Mossotti factor of individual polystyrene particles (18–24.9 μm) in both devices with a value of –0.40 ± 0.063 (n = 110) and –0.48 ± 0.055 (n = 18) for the DRIE and PDMS isoDEP platforms, respectively. The isoDEP platform is capable of analyzing multiple particles simultaneously, providing greater throughput than traditional electrorotation platforms.</description><identifier>ISSN: 0173-0835</identifier><identifier>EISSN: 1522-2683</identifier><identifier>DOI: 10.1002/elps.201600517</identifier><identifier>PMID: 28112416</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Atoms &amp; subatomic particles ; Computer Simulation ; Curvature ; Devices ; Dielectric spectroscopy ; Dielectrophoresis ; Electrical resistivity ; Electroosmosis ; Electrophoresis, Microchip - instrumentation ; Electrophoresis, Microchip - methods ; Equipment Design - instrumentation ; Equipment Design - methods ; Ion etching ; Microelectrodes ; Microfluidics ; Models, Theoretical ; Particle Size ; Particle tracking ; Particle tracking velocimetry ; Platforms ; Polydimethylsiloxane ; Polystyrene resins ; Polystyrenes ; Prototypes ; Reactive ion etching ; Silicon ; Silicon wafers ; Silicone resins</subject><ispartof>Electrophoresis, 2017-06, Vol.38 (11), p.1441-1449</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4718-6be7b4ea8fa690c72dda260ee2245c7c05eda5126b801c273da59b44ac826ea73</citedby><cites>FETCH-LOGICAL-c4718-6be7b4ea8fa690c72dda260ee2245c7c05eda5126b801c273da59b44ac826ea73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Felps.201600517$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Felps.201600517$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28112416$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Allen, Daniel J.</creatorcontrib><creatorcontrib>Accolla, Robert P.</creatorcontrib><creatorcontrib>Williams, Stuart J.</creatorcontrib><title>Isomotive dielectrophoresis for parallel analysis of individual particles</title><title>Electrophoresis</title><addtitle>Electrophoresis</addtitle><description>Two dielectrophoresis systems are introduced where the induced dielectrophoretic force is constant throughout the experimental region, resulting in uniform (isomotive) microparticle translation. Isomotive dielectrophoresis (isoDEP) is accomplished through a unique geometry where the gradient of the field‐squared (∇Erms2) is constant, a characteristic that is otherwise highly nonuniform in traditional DEP platforms. The governing isoDEP equations were derived herein and applied to two different isoDEP prototypes: (i) one fabricated from deep reactive ion etching (DRIE) of a conductive silicon wafer (1–10 Ω‐cm) whose patterned features served as electrodes and microchannel sidewalls simultaneously; (ii) a second where the electric field is applied lengthwise through a PDMS microchannel whose geometry follows a specific curvature. Both positive and negative dielectrophoresis was demonstrated with the isoDEP devices using silver‐coated hollow glass spheres and polystyrene particles, respectively. Particle tracking was used to compare particle trajectory with the expected dielectrophoretic response; further, particle velocity was used to measure the Clausius–Mossotti factor of individual polystyrene particles (18–24.9 μm) in both devices with a value of –0.40 ± 0.063 (n = 110) and –0.48 ± 0.055 (n = 18) for the DRIE and PDMS isoDEP platforms, respectively. The isoDEP platform is capable of analyzing multiple particles simultaneously, providing greater throughput than traditional electrorotation platforms.</description><subject>Atoms &amp; subatomic particles</subject><subject>Computer Simulation</subject><subject>Curvature</subject><subject>Devices</subject><subject>Dielectric spectroscopy</subject><subject>Dielectrophoresis</subject><subject>Electrical resistivity</subject><subject>Electroosmosis</subject><subject>Electrophoresis, Microchip - instrumentation</subject><subject>Electrophoresis, Microchip - methods</subject><subject>Equipment Design - instrumentation</subject><subject>Equipment Design - methods</subject><subject>Ion etching</subject><subject>Microelectrodes</subject><subject>Microfluidics</subject><subject>Models, Theoretical</subject><subject>Particle Size</subject><subject>Particle tracking</subject><subject>Particle tracking velocimetry</subject><subject>Platforms</subject><subject>Polydimethylsiloxane</subject><subject>Polystyrene resins</subject><subject>Polystyrenes</subject><subject>Prototypes</subject><subject>Reactive ion etching</subject><subject>Silicon</subject><subject>Silicon wafers</subject><subject>Silicone resins</subject><issn>0173-0835</issn><issn>1522-2683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LxDAQhoMoun5cPUrBi5euk2mapEcRPxYWFNRzSdMpRrKbmmyV_fd2WfXgxdMwM8-8MA9jpxymHAAvyfdpisAlQMnVDpvwEjFHqYtdNgGuihx0UR6ww5TeAEBUQuyzA9Sco-BywmazFBZh5T4oax15sqsY-tcQKbmUdSFmvYnGe_KZWRq_3kxDl7ll6z5cOxi_2a-c9ZSO2V5nfKKT73rEXm5vnq_v8_nD3ez6ap5bobjOZUOqEWR0Z2QFVmHbGpRAhChKqyyU1JqSo2w0cIuqGLuqEcJYjZKMKo7YxTa3j-F9oLSqFy5Z8t4sKQyp5lryslKIfETP_6BvYYjjHyNVIQhVaISRmm4pG0NKkbq6j25h4rrmUG8k1xvJ9a_k8eDsO3ZoFtT-4j9WR0BsgU_naf1PXH0zf3ySUOniC5IFiFU</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Allen, Daniel J.</creator><creator>Accolla, Robert P.</creator><creator>Williams, Stuart J.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>201706</creationdate><title>Isomotive dielectrophoresis for parallel analysis of individual particles</title><author>Allen, Daniel J. ; Accolla, Robert P. ; Williams, Stuart J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4718-6be7b4ea8fa690c72dda260ee2245c7c05eda5126b801c273da59b44ac826ea73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Atoms &amp; subatomic particles</topic><topic>Computer Simulation</topic><topic>Curvature</topic><topic>Devices</topic><topic>Dielectric spectroscopy</topic><topic>Dielectrophoresis</topic><topic>Electrical resistivity</topic><topic>Electroosmosis</topic><topic>Electrophoresis, Microchip - instrumentation</topic><topic>Electrophoresis, Microchip - methods</topic><topic>Equipment Design - instrumentation</topic><topic>Equipment Design - methods</topic><topic>Ion etching</topic><topic>Microelectrodes</topic><topic>Microfluidics</topic><topic>Models, Theoretical</topic><topic>Particle Size</topic><topic>Particle tracking</topic><topic>Particle tracking velocimetry</topic><topic>Platforms</topic><topic>Polydimethylsiloxane</topic><topic>Polystyrene resins</topic><topic>Polystyrenes</topic><topic>Prototypes</topic><topic>Reactive ion etching</topic><topic>Silicon</topic><topic>Silicon wafers</topic><topic>Silicone resins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Allen, Daniel J.</creatorcontrib><creatorcontrib>Accolla, Robert P.</creatorcontrib><creatorcontrib>Williams, Stuart J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Electrophoresis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Allen, Daniel J.</au><au>Accolla, Robert P.</au><au>Williams, Stuart J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isomotive dielectrophoresis for parallel analysis of individual particles</atitle><jtitle>Electrophoresis</jtitle><addtitle>Electrophoresis</addtitle><date>2017-06</date><risdate>2017</risdate><volume>38</volume><issue>11</issue><spage>1441</spage><epage>1449</epage><pages>1441-1449</pages><issn>0173-0835</issn><eissn>1522-2683</eissn><abstract>Two dielectrophoresis systems are introduced where the induced dielectrophoretic force is constant throughout the experimental region, resulting in uniform (isomotive) microparticle translation. Isomotive dielectrophoresis (isoDEP) is accomplished through a unique geometry where the gradient of the field‐squared (∇Erms2) is constant, a characteristic that is otherwise highly nonuniform in traditional DEP platforms. The governing isoDEP equations were derived herein and applied to two different isoDEP prototypes: (i) one fabricated from deep reactive ion etching (DRIE) of a conductive silicon wafer (1–10 Ω‐cm) whose patterned features served as electrodes and microchannel sidewalls simultaneously; (ii) a second where the electric field is applied lengthwise through a PDMS microchannel whose geometry follows a specific curvature. Both positive and negative dielectrophoresis was demonstrated with the isoDEP devices using silver‐coated hollow glass spheres and polystyrene particles, respectively. Particle tracking was used to compare particle trajectory with the expected dielectrophoretic response; further, particle velocity was used to measure the Clausius–Mossotti factor of individual polystyrene particles (18–24.9 μm) in both devices with a value of –0.40 ± 0.063 (n = 110) and –0.48 ± 0.055 (n = 18) for the DRIE and PDMS isoDEP platforms, respectively. The isoDEP platform is capable of analyzing multiple particles simultaneously, providing greater throughput than traditional electrorotation platforms.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28112416</pmid><doi>10.1002/elps.201600517</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0173-0835
ispartof Electrophoresis, 2017-06, Vol.38 (11), p.1441-1449
issn 0173-0835
1522-2683
language eng
recordid cdi_proquest_miscellaneous_1861597221
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Atoms & subatomic particles
Computer Simulation
Curvature
Devices
Dielectric spectroscopy
Dielectrophoresis
Electrical resistivity
Electroosmosis
Electrophoresis, Microchip - instrumentation
Electrophoresis, Microchip - methods
Equipment Design - instrumentation
Equipment Design - methods
Ion etching
Microelectrodes
Microfluidics
Models, Theoretical
Particle Size
Particle tracking
Particle tracking velocimetry
Platforms
Polydimethylsiloxane
Polystyrene resins
Polystyrenes
Prototypes
Reactive ion etching
Silicon
Silicon wafers
Silicone resins
title Isomotive dielectrophoresis for parallel analysis of individual particles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T04%3A25%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isomotive%20dielectrophoresis%20for%20parallel%20analysis%20of%20individual%20particles&rft.jtitle=Electrophoresis&rft.au=Allen,%20Daniel%20J.&rft.date=2017-06&rft.volume=38&rft.issue=11&rft.spage=1441&rft.epage=1449&rft.pages=1441-1449&rft.issn=0173-0835&rft.eissn=1522-2683&rft_id=info:doi/10.1002/elps.201600517&rft_dat=%3Cproquest_cross%3E1861597221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1920473820&rft_id=info:pmid/28112416&rfr_iscdi=true