A multimodal approach to estimating vigilance using EEG and forehead EOG

Objective. Covert aspects of ongoing user mental states provide key context information for user-aware human computer interactions. In this paper, we focus on the problem of estimating the vigilance of users using EEG and EOG signals. Approach. The PERCLOS index as vigilance annotation is obtained f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neural engineering 2017-04, Vol.14 (2), p.026017-026017
Hauptverfasser: Zheng, Wei-Long, Lu, Bao-Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 026017
container_issue 2
container_start_page 026017
container_title Journal of neural engineering
container_volume 14
creator Zheng, Wei-Long
Lu, Bao-Liang
description Objective. Covert aspects of ongoing user mental states provide key context information for user-aware human computer interactions. In this paper, we focus on the problem of estimating the vigilance of users using EEG and EOG signals. Approach. The PERCLOS index as vigilance annotation is obtained from eye tracking glasses. To improve the feasibility and wearability of vigilance estimation devices for real-world applications, we adopt a novel electrode placement for forehead EOG and extract various eye movement features, which contain the principal information of traditional EOG. We explore the effects of EEG from different brain areas and combine EEG and forehead EOG to leverage their complementary characteristics for vigilance estimation. Considering that the vigilance of users is a dynamic changing process because the intrinsic mental states of users involve temporal evolution, we introduce continuous conditional neural field and continuous conditional random field models to capture dynamic temporal dependency. Main results. We propose a multimodal approach to estimating vigilance by combining EEG and forehead EOG and incorporating the temporal dependency of vigilance into model training. The experimental results demonstrate that modality fusion can improve the performance compared with a single modality, EOG and EEG contain complementary information for vigilance estimation, and the temporal dependency-based models can enhance the performance of vigilance estimation. From the experimental results, we observe that theta and alpha frequency activities are increased, while gamma frequency activities are decreased in drowsy states in contrast to awake states. Significance. The forehead setup allows for the simultaneous collection of EEG and EOG and achieves comparative performance using only four shared electrodes in comparison with the temporal and posterior sites.
doi_str_mv 10.1088/1741-2552/aa5a98
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1861578156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1861578156</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-9419dd9ac500f04548a5882520611b91d588fe8357abc986f7c4560b160739a13</originalsourceid><addsrcrecordid>eNp9kL1PwzAQxS0EoqWwMyFvMBB6l8SJM1ZVaJEqdYHZcmynTZUv4gaJ_x5HKZ0Qk32n3z299wi5R3hB4HyOcYiez5g_l5LJhF-Q6Xl1ef5HMCE31h4AAowTuCYTnyP4PAimZL2gVV8ei6rRsqSybbtGqj09NtRYt5XHot7Rr2JXlLJWhvZ2mNN0RWWtad50Zm-kpul2dUuucllac3d6Z-TjNX1frr3NdvW2XGw8FUT86CUhJlonUjGAHEIWcsk495kPEWKWoHZTbnjAYpmphEd5rEIXIMMI4iCRGMzI06jrnH72zqSoCqtM6fyZprcCeYQs5sgih8KIqq6xtjO5aDsXqfsWCGLoTwwFiaEsMfbnTh5O6n1WGX0--C3MAc8jUDStODR9V7uw_-k9_oEfaiMwFL4APwKMRavz4Ad3Q4PY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1861578156</pqid></control><display><type>article</type><title>A multimodal approach to estimating vigilance using EEG and forehead EOG</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Zheng, Wei-Long ; Lu, Bao-Liang</creator><creatorcontrib>Zheng, Wei-Long ; Lu, Bao-Liang</creatorcontrib><description>Objective. Covert aspects of ongoing user mental states provide key context information for user-aware human computer interactions. In this paper, we focus on the problem of estimating the vigilance of users using EEG and EOG signals. Approach. The PERCLOS index as vigilance annotation is obtained from eye tracking glasses. To improve the feasibility and wearability of vigilance estimation devices for real-world applications, we adopt a novel electrode placement for forehead EOG and extract various eye movement features, which contain the principal information of traditional EOG. We explore the effects of EEG from different brain areas and combine EEG and forehead EOG to leverage their complementary characteristics for vigilance estimation. Considering that the vigilance of users is a dynamic changing process because the intrinsic mental states of users involve temporal evolution, we introduce continuous conditional neural field and continuous conditional random field models to capture dynamic temporal dependency. Main results. We propose a multimodal approach to estimating vigilance by combining EEG and forehead EOG and incorporating the temporal dependency of vigilance into model training. The experimental results demonstrate that modality fusion can improve the performance compared with a single modality, EOG and EEG contain complementary information for vigilance estimation, and the temporal dependency-based models can enhance the performance of vigilance estimation. From the experimental results, we observe that theta and alpha frequency activities are increased, while gamma frequency activities are decreased in drowsy states in contrast to awake states. Significance. The forehead setup allows for the simultaneous collection of EEG and EOG and achieves comparative performance using only four shared electrodes in comparison with the temporal and posterior sites.</description><identifier>ISSN: 1741-2560</identifier><identifier>EISSN: 1741-2552</identifier><identifier>DOI: 10.1088/1741-2552/aa5a98</identifier><identifier>PMID: 28102833</identifier><identifier>CODEN: JNEIEZ</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Adult ; Algorithms ; Arousal - physiology ; Brain Waves - physiology ; brain-computer interfaces ; EEG ; Electroencephalography - methods ; Electrooculography - methods ; EOG ; Female ; Humans ; Male ; multimodal approach ; Pattern Recognition, Automated - methods ; Psychomotor Performance - physiology ; Reproducibility of Results ; Sensitivity and Specificity ; temporal dependency ; vigilance estimation</subject><ispartof>Journal of neural engineering, 2017-04, Vol.14 (2), p.026017-026017</ispartof><rights>2017 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-9419dd9ac500f04548a5882520611b91d588fe8357abc986f7c4560b160739a13</citedby><cites>FETCH-LOGICAL-c368t-9419dd9ac500f04548a5882520611b91d588fe8357abc986f7c4560b160739a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1741-2552/aa5a98/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28102833$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Wei-Long</creatorcontrib><creatorcontrib>Lu, Bao-Liang</creatorcontrib><title>A multimodal approach to estimating vigilance using EEG and forehead EOG</title><title>Journal of neural engineering</title><addtitle>JNE</addtitle><addtitle>J. Neural Eng</addtitle><description>Objective. Covert aspects of ongoing user mental states provide key context information for user-aware human computer interactions. In this paper, we focus on the problem of estimating the vigilance of users using EEG and EOG signals. Approach. The PERCLOS index as vigilance annotation is obtained from eye tracking glasses. To improve the feasibility and wearability of vigilance estimation devices for real-world applications, we adopt a novel electrode placement for forehead EOG and extract various eye movement features, which contain the principal information of traditional EOG. We explore the effects of EEG from different brain areas and combine EEG and forehead EOG to leverage their complementary characteristics for vigilance estimation. Considering that the vigilance of users is a dynamic changing process because the intrinsic mental states of users involve temporal evolution, we introduce continuous conditional neural field and continuous conditional random field models to capture dynamic temporal dependency. Main results. We propose a multimodal approach to estimating vigilance by combining EEG and forehead EOG and incorporating the temporal dependency of vigilance into model training. The experimental results demonstrate that modality fusion can improve the performance compared with a single modality, EOG and EEG contain complementary information for vigilance estimation, and the temporal dependency-based models can enhance the performance of vigilance estimation. From the experimental results, we observe that theta and alpha frequency activities are increased, while gamma frequency activities are decreased in drowsy states in contrast to awake states. Significance. The forehead setup allows for the simultaneous collection of EEG and EOG and achieves comparative performance using only four shared electrodes in comparison with the temporal and posterior sites.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Arousal - physiology</subject><subject>Brain Waves - physiology</subject><subject>brain-computer interfaces</subject><subject>EEG</subject><subject>Electroencephalography - methods</subject><subject>Electrooculography - methods</subject><subject>EOG</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>multimodal approach</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Psychomotor Performance - physiology</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>temporal dependency</subject><subject>vigilance estimation</subject><issn>1741-2560</issn><issn>1741-2552</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kL1PwzAQxS0EoqWwMyFvMBB6l8SJM1ZVaJEqdYHZcmynTZUv4gaJ_x5HKZ0Qk32n3z299wi5R3hB4HyOcYiez5g_l5LJhF-Q6Xl1ef5HMCE31h4AAowTuCYTnyP4PAimZL2gVV8ei6rRsqSybbtGqj09NtRYt5XHot7Rr2JXlLJWhvZ2mNN0RWWtad50Zm-kpul2dUuucllac3d6Z-TjNX1frr3NdvW2XGw8FUT86CUhJlonUjGAHEIWcsk495kPEWKWoHZTbnjAYpmphEd5rEIXIMMI4iCRGMzI06jrnH72zqSoCqtM6fyZprcCeYQs5sgih8KIqq6xtjO5aDsXqfsWCGLoTwwFiaEsMfbnTh5O6n1WGX0--C3MAc8jUDStODR9V7uw_-k9_oEfaiMwFL4APwKMRavz4Ad3Q4PY</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Zheng, Wei-Long</creator><creator>Lu, Bao-Liang</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170401</creationdate><title>A multimodal approach to estimating vigilance using EEG and forehead EOG</title><author>Zheng, Wei-Long ; Lu, Bao-Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-9419dd9ac500f04548a5882520611b91d588fe8357abc986f7c4560b160739a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Arousal - physiology</topic><topic>Brain Waves - physiology</topic><topic>brain-computer interfaces</topic><topic>EEG</topic><topic>Electroencephalography - methods</topic><topic>Electrooculography - methods</topic><topic>EOG</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>multimodal approach</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Psychomotor Performance - physiology</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>temporal dependency</topic><topic>vigilance estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Wei-Long</creatorcontrib><creatorcontrib>Lu, Bao-Liang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neural engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Wei-Long</au><au>Lu, Bao-Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multimodal approach to estimating vigilance using EEG and forehead EOG</atitle><jtitle>Journal of neural engineering</jtitle><stitle>JNE</stitle><addtitle>J. Neural Eng</addtitle><date>2017-04-01</date><risdate>2017</risdate><volume>14</volume><issue>2</issue><spage>026017</spage><epage>026017</epage><pages>026017-026017</pages><issn>1741-2560</issn><eissn>1741-2552</eissn><coden>JNEIEZ</coden><abstract>Objective. Covert aspects of ongoing user mental states provide key context information for user-aware human computer interactions. In this paper, we focus on the problem of estimating the vigilance of users using EEG and EOG signals. Approach. The PERCLOS index as vigilance annotation is obtained from eye tracking glasses. To improve the feasibility and wearability of vigilance estimation devices for real-world applications, we adopt a novel electrode placement for forehead EOG and extract various eye movement features, which contain the principal information of traditional EOG. We explore the effects of EEG from different brain areas and combine EEG and forehead EOG to leverage their complementary characteristics for vigilance estimation. Considering that the vigilance of users is a dynamic changing process because the intrinsic mental states of users involve temporal evolution, we introduce continuous conditional neural field and continuous conditional random field models to capture dynamic temporal dependency. Main results. We propose a multimodal approach to estimating vigilance by combining EEG and forehead EOG and incorporating the temporal dependency of vigilance into model training. The experimental results demonstrate that modality fusion can improve the performance compared with a single modality, EOG and EEG contain complementary information for vigilance estimation, and the temporal dependency-based models can enhance the performance of vigilance estimation. From the experimental results, we observe that theta and alpha frequency activities are increased, while gamma frequency activities are decreased in drowsy states in contrast to awake states. Significance. The forehead setup allows for the simultaneous collection of EEG and EOG and achieves comparative performance using only four shared electrodes in comparison with the temporal and posterior sites.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>28102833</pmid><doi>10.1088/1741-2552/aa5a98</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1741-2560
ispartof Journal of neural engineering, 2017-04, Vol.14 (2), p.026017-026017
issn 1741-2560
1741-2552
language eng
recordid cdi_proquest_miscellaneous_1861578156
source MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Adult
Algorithms
Arousal - physiology
Brain Waves - physiology
brain-computer interfaces
EEG
Electroencephalography - methods
Electrooculography - methods
EOG
Female
Humans
Male
multimodal approach
Pattern Recognition, Automated - methods
Psychomotor Performance - physiology
Reproducibility of Results
Sensitivity and Specificity
temporal dependency
vigilance estimation
title A multimodal approach to estimating vigilance using EEG and forehead EOG
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A10%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multimodal%20approach%20to%20estimating%20vigilance%20using%20EEG%20and%20forehead%20EOG&rft.jtitle=Journal%20of%20neural%20engineering&rft.au=Zheng,%20Wei-Long&rft.date=2017-04-01&rft.volume=14&rft.issue=2&rft.spage=026017&rft.epage=026017&rft.pages=026017-026017&rft.issn=1741-2560&rft.eissn=1741-2552&rft.coden=JNEIEZ&rft_id=info:doi/10.1088/1741-2552/aa5a98&rft_dat=%3Cproquest_pubme%3E1861578156%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1861578156&rft_id=info:pmid/28102833&rfr_iscdi=true