PLK1 (polo like kinase 1) inhibits MTOR complex 1 and promotes autophagy

Mechanistic target of rapamycin complex 1 (MTORC1) and polo like kinase 1 (PLK1) are major drivers of cancer cell growth and proliferation, and inhibitors of both protein kinases are currently being investigated in clinical studies. To date, MTORC1′s and PLK1′s functions are mostly studied separatel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Autophagy 2017-03, Vol.13 (3), p.486-505
Hauptverfasser: Ruf, Stefanie, Heberle, Alexander Martin, Langelaar-Makkinje, Miriam, Gelino, Sara, Wilkinson, Deepti, Gerbeth, Carolin, Schwarz, Jennifer Jasmin, Holzwarth, Birgit, Warscheid, Bettina, Meisinger, Chris, van Vugt, Marcel A. T. M., Baumeister, Ralf, Hansen, Malene, Thedieck, Kathrin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 505
container_issue 3
container_start_page 486
container_title Autophagy
container_volume 13
creator Ruf, Stefanie
Heberle, Alexander Martin
Langelaar-Makkinje, Miriam
Gelino, Sara
Wilkinson, Deepti
Gerbeth, Carolin
Schwarz, Jennifer Jasmin
Holzwarth, Birgit
Warscheid, Bettina
Meisinger, Chris
van Vugt, Marcel A. T. M.
Baumeister, Ralf
Hansen, Malene
Thedieck, Kathrin
description Mechanistic target of rapamycin complex 1 (MTORC1) and polo like kinase 1 (PLK1) are major drivers of cancer cell growth and proliferation, and inhibitors of both protein kinases are currently being investigated in clinical studies. To date, MTORC1′s and PLK1′s functions are mostly studied separately, and reports on their mutual crosstalk are scarce. Here, we identify PLK1 as a physical MTORC1 interactor in human cancer cells. PLK1 inhibition enhances MTORC1 activity under nutrient sufficiency and in starved cells, and PLK1 directly phosphorylates the MTORC1 component RPTOR/RAPTOR in vitro. PLK1 and MTORC1 reside together at lysosomes, the subcellular site where MTORC1 is active. Consistent with an inhibitory role of PLK1 toward MTORC1, PLK1 overexpression inhibits lysosomal association of the PLK1-MTORC1 complex, whereas PLK1 inhibition promotes lysosomal localization of MTOR. PLK1-MTORC1 binding is enhanced by amino acid starvation, a condition known to increase autophagy. MTORC1 inhibition is an important step in autophagy activation. Consistently, PLK1 inhibition mitigates autophagy in cancer cells both under nutrient starvation and sufficiency, and a role of PLK1 in autophagy is also observed in the invertebrate model organism Caenorhabditis elegans. In summary, PLK1 inhibits MTORC1 and thereby positively contributes to autophagy. Since autophagy is increasingly recognized to contribute to tumor cell survival and growth, we propose that cautious monitoring of MTORC1 and autophagy readouts in clinical trials with PLK1 inhibitors is needed to develop strategies for optimized (combinatorial) cancer therapies targeting MTORC1, PLK1, and autophagy.
doi_str_mv 10.1080/15548627.2016.1263781
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_miscellaneous_1861577577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1861577577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-766a02ccf0ddcd159ac4ea8cd2c6e0a0614f0c3d6c5928afaded69ae1bd72e553</originalsourceid><addsrcrecordid>eNp9kVtPGzEQhS3UqtC0PwHkR3hI8CX2Oi-oVVSaiqBUKDxbE9ubGLzrrb2h5N93o1xEX5BG8mj8zTmWD0LnlAwoUeSaCjFUkhUDRqgcUCZ5oegJOtvO-0py8eHYs-IUfc75iRAu1Yh9QqdMUcIKzs_Q5Pf0juLLJoaIg392-NnXkB2mV9jXK7_wbcb389kDNrFqgnvFFENtcZNiFVuXMazb2KxgufmCPpYQsvu6P3vo8fbHfDzpT2c_f42_T_tmKFXbL6QEwowpibXGUjECM3SgjGVGOgJE0mFJDLfSiBFTUIJ1Vo7A0YUtmBOC99DNTrdZLypnjavbBEE3yVeQNjqC1__f1H6ll_FFCy47O9oJXO4FUvyzdrnVlc_GhQC1i-usqeq4ouiqQ8UONSnmnFx5tKFEb1PQhxT0NgW9T6Hbu3j7xuPW4ds74NsO8HUZUwV_YwpWt7AJMZUJauOz5u97_AMwdpdP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1861577577</pqid></control><display><type>article</type><title>PLK1 (polo like kinase 1) inhibits MTOR complex 1 and promotes autophagy</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Ruf, Stefanie ; Heberle, Alexander Martin ; Langelaar-Makkinje, Miriam ; Gelino, Sara ; Wilkinson, Deepti ; Gerbeth, Carolin ; Schwarz, Jennifer Jasmin ; Holzwarth, Birgit ; Warscheid, Bettina ; Meisinger, Chris ; van Vugt, Marcel A. T. M. ; Baumeister, Ralf ; Hansen, Malene ; Thedieck, Kathrin</creator><creatorcontrib>Ruf, Stefanie ; Heberle, Alexander Martin ; Langelaar-Makkinje, Miriam ; Gelino, Sara ; Wilkinson, Deepti ; Gerbeth, Carolin ; Schwarz, Jennifer Jasmin ; Holzwarth, Birgit ; Warscheid, Bettina ; Meisinger, Chris ; van Vugt, Marcel A. T. M. ; Baumeister, Ralf ; Hansen, Malene ; Thedieck, Kathrin</creatorcontrib><description>Mechanistic target of rapamycin complex 1 (MTORC1) and polo like kinase 1 (PLK1) are major drivers of cancer cell growth and proliferation, and inhibitors of both protein kinases are currently being investigated in clinical studies. To date, MTORC1′s and PLK1′s functions are mostly studied separately, and reports on their mutual crosstalk are scarce. Here, we identify PLK1 as a physical MTORC1 interactor in human cancer cells. PLK1 inhibition enhances MTORC1 activity under nutrient sufficiency and in starved cells, and PLK1 directly phosphorylates the MTORC1 component RPTOR/RAPTOR in vitro. PLK1 and MTORC1 reside together at lysosomes, the subcellular site where MTORC1 is active. Consistent with an inhibitory role of PLK1 toward MTORC1, PLK1 overexpression inhibits lysosomal association of the PLK1-MTORC1 complex, whereas PLK1 inhibition promotes lysosomal localization of MTOR. PLK1-MTORC1 binding is enhanced by amino acid starvation, a condition known to increase autophagy. MTORC1 inhibition is an important step in autophagy activation. Consistently, PLK1 inhibition mitigates autophagy in cancer cells both under nutrient starvation and sufficiency, and a role of PLK1 in autophagy is also observed in the invertebrate model organism Caenorhabditis elegans. In summary, PLK1 inhibits MTORC1 and thereby positively contributes to autophagy. Since autophagy is increasingly recognized to contribute to tumor cell survival and growth, we propose that cautious monitoring of MTORC1 and autophagy readouts in clinical trials with PLK1 inhibitors is needed to develop strategies for optimized (combinatorial) cancer therapies targeting MTORC1, PLK1, and autophagy.</description><identifier>ISSN: 1554-8627</identifier><identifier>EISSN: 1554-8635</identifier><identifier>DOI: 10.1080/15548627.2016.1263781</identifier><identifier>PMID: 28102733</identifier><language>eng</language><publisher>United States: Taylor &amp; Francis</publisher><subject>amino acid ; Amino Acids - deficiency ; Amino Acids - metabolism ; Animals ; Autophagy ; Basic Research Papers ; BI2536 ; Biomarkers - metabolism ; Caenorhabditis elegans - metabolism ; Caenorhabditis elegans Proteins - metabolism ; Cell Cycle Proteins - antagonists &amp; inhibitors ; Cell Cycle Proteins - metabolism ; HeLa Cells ; Humans ; insulin ; Interphase ; lysosome ; Lysosomes - metabolism ; Mechanistic Target of Rapamycin Complex 1 - metabolism ; Mitosis ; MTOR ; MTORC1 ; Phosphorylation ; PLK1 ; Polo-Like Kinase 1 ; Protein Binding ; Protein Serine-Threonine Kinases - antagonists &amp; inhibitors ; Protein Serine-Threonine Kinases - metabolism ; Proto-Oncogene Proteins - antagonists &amp; inhibitors ; Proto-Oncogene Proteins - metabolism ; Regulatory-Associated Protein of mTOR - metabolism ; RPTOR ; starvation ; TOR Serine-Threonine Kinases - metabolism</subject><ispartof>Autophagy, 2017-03, Vol.13 (3), p.486-505</ispartof><rights>2017 The Author(s). Published with license by Taylor &amp; Francis © Stefanie Ruf, Alexander Martin Heberle, Miriam Langelaar-Makkinje, Sara Gelino, Deepti Wilkinson, Carolin Gerbeth, Jennifer Jasmin Schwarz, Birgit Holzwarth, Bettina Warscheid, Chris Meisinger, Marcel A. T. M. van Vugt, Ralf Baumeister, Malene Hansen, and Kathrin Thedieck 2017</rights><rights>2017 The Author(s). Published with license by Taylor &amp; Francis 2017 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-766a02ccf0ddcd159ac4ea8cd2c6e0a0614f0c3d6c5928afaded69ae1bd72e553</citedby><cites>FETCH-LOGICAL-c468t-766a02ccf0ddcd159ac4ea8cd2c6e0a0614f0c3d6c5928afaded69ae1bd72e553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5361591/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5361591/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28102733$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ruf, Stefanie</creatorcontrib><creatorcontrib>Heberle, Alexander Martin</creatorcontrib><creatorcontrib>Langelaar-Makkinje, Miriam</creatorcontrib><creatorcontrib>Gelino, Sara</creatorcontrib><creatorcontrib>Wilkinson, Deepti</creatorcontrib><creatorcontrib>Gerbeth, Carolin</creatorcontrib><creatorcontrib>Schwarz, Jennifer Jasmin</creatorcontrib><creatorcontrib>Holzwarth, Birgit</creatorcontrib><creatorcontrib>Warscheid, Bettina</creatorcontrib><creatorcontrib>Meisinger, Chris</creatorcontrib><creatorcontrib>van Vugt, Marcel A. T. M.</creatorcontrib><creatorcontrib>Baumeister, Ralf</creatorcontrib><creatorcontrib>Hansen, Malene</creatorcontrib><creatorcontrib>Thedieck, Kathrin</creatorcontrib><title>PLK1 (polo like kinase 1) inhibits MTOR complex 1 and promotes autophagy</title><title>Autophagy</title><addtitle>Autophagy</addtitle><description>Mechanistic target of rapamycin complex 1 (MTORC1) and polo like kinase 1 (PLK1) are major drivers of cancer cell growth and proliferation, and inhibitors of both protein kinases are currently being investigated in clinical studies. To date, MTORC1′s and PLK1′s functions are mostly studied separately, and reports on their mutual crosstalk are scarce. Here, we identify PLK1 as a physical MTORC1 interactor in human cancer cells. PLK1 inhibition enhances MTORC1 activity under nutrient sufficiency and in starved cells, and PLK1 directly phosphorylates the MTORC1 component RPTOR/RAPTOR in vitro. PLK1 and MTORC1 reside together at lysosomes, the subcellular site where MTORC1 is active. Consistent with an inhibitory role of PLK1 toward MTORC1, PLK1 overexpression inhibits lysosomal association of the PLK1-MTORC1 complex, whereas PLK1 inhibition promotes lysosomal localization of MTOR. PLK1-MTORC1 binding is enhanced by amino acid starvation, a condition known to increase autophagy. MTORC1 inhibition is an important step in autophagy activation. Consistently, PLK1 inhibition mitigates autophagy in cancer cells both under nutrient starvation and sufficiency, and a role of PLK1 in autophagy is also observed in the invertebrate model organism Caenorhabditis elegans. In summary, PLK1 inhibits MTORC1 and thereby positively contributes to autophagy. Since autophagy is increasingly recognized to contribute to tumor cell survival and growth, we propose that cautious monitoring of MTORC1 and autophagy readouts in clinical trials with PLK1 inhibitors is needed to develop strategies for optimized (combinatorial) cancer therapies targeting MTORC1, PLK1, and autophagy.</description><subject>amino acid</subject><subject>Amino Acids - deficiency</subject><subject>Amino Acids - metabolism</subject><subject>Animals</subject><subject>Autophagy</subject><subject>Basic Research Papers</subject><subject>BI2536</subject><subject>Biomarkers - metabolism</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Caenorhabditis elegans Proteins - metabolism</subject><subject>Cell Cycle Proteins - antagonists &amp; inhibitors</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>insulin</subject><subject>Interphase</subject><subject>lysosome</subject><subject>Lysosomes - metabolism</subject><subject>Mechanistic Target of Rapamycin Complex 1 - metabolism</subject><subject>Mitosis</subject><subject>MTOR</subject><subject>MTORC1</subject><subject>Phosphorylation</subject><subject>PLK1</subject><subject>Polo-Like Kinase 1</subject><subject>Protein Binding</subject><subject>Protein Serine-Threonine Kinases - antagonists &amp; inhibitors</subject><subject>Protein Serine-Threonine Kinases - metabolism</subject><subject>Proto-Oncogene Proteins - antagonists &amp; inhibitors</subject><subject>Proto-Oncogene Proteins - metabolism</subject><subject>Regulatory-Associated Protein of mTOR - metabolism</subject><subject>RPTOR</subject><subject>starvation</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><issn>1554-8627</issn><issn>1554-8635</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>EIF</sourceid><recordid>eNp9kVtPGzEQhS3UqtC0PwHkR3hI8CX2Oi-oVVSaiqBUKDxbE9ubGLzrrb2h5N93o1xEX5BG8mj8zTmWD0LnlAwoUeSaCjFUkhUDRqgcUCZ5oegJOtvO-0py8eHYs-IUfc75iRAu1Yh9QqdMUcIKzs_Q5Pf0juLLJoaIg392-NnXkB2mV9jXK7_wbcb389kDNrFqgnvFFENtcZNiFVuXMazb2KxgufmCPpYQsvu6P3vo8fbHfDzpT2c_f42_T_tmKFXbL6QEwowpibXGUjECM3SgjGVGOgJE0mFJDLfSiBFTUIJ1Vo7A0YUtmBOC99DNTrdZLypnjavbBEE3yVeQNjqC1__f1H6ll_FFCy47O9oJXO4FUvyzdrnVlc_GhQC1i-usqeq4ouiqQ8UONSnmnFx5tKFEb1PQhxT0NgW9T6Hbu3j7xuPW4ds74NsO8HUZUwV_YwpWt7AJMZUJauOz5u97_AMwdpdP</recordid><startdate>20170304</startdate><enddate>20170304</enddate><creator>Ruf, Stefanie</creator><creator>Heberle, Alexander Martin</creator><creator>Langelaar-Makkinje, Miriam</creator><creator>Gelino, Sara</creator><creator>Wilkinson, Deepti</creator><creator>Gerbeth, Carolin</creator><creator>Schwarz, Jennifer Jasmin</creator><creator>Holzwarth, Birgit</creator><creator>Warscheid, Bettina</creator><creator>Meisinger, Chris</creator><creator>van Vugt, Marcel A. T. M.</creator><creator>Baumeister, Ralf</creator><creator>Hansen, Malene</creator><creator>Thedieck, Kathrin</creator><general>Taylor &amp; Francis</general><scope>0YH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170304</creationdate><title>PLK1 (polo like kinase 1) inhibits MTOR complex 1 and promotes autophagy</title><author>Ruf, Stefanie ; Heberle, Alexander Martin ; Langelaar-Makkinje, Miriam ; Gelino, Sara ; Wilkinson, Deepti ; Gerbeth, Carolin ; Schwarz, Jennifer Jasmin ; Holzwarth, Birgit ; Warscheid, Bettina ; Meisinger, Chris ; van Vugt, Marcel A. T. M. ; Baumeister, Ralf ; Hansen, Malene ; Thedieck, Kathrin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-766a02ccf0ddcd159ac4ea8cd2c6e0a0614f0c3d6c5928afaded69ae1bd72e553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>amino acid</topic><topic>Amino Acids - deficiency</topic><topic>Amino Acids - metabolism</topic><topic>Animals</topic><topic>Autophagy</topic><topic>Basic Research Papers</topic><topic>BI2536</topic><topic>Biomarkers - metabolism</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Caenorhabditis elegans Proteins - metabolism</topic><topic>Cell Cycle Proteins - antagonists &amp; inhibitors</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>insulin</topic><topic>Interphase</topic><topic>lysosome</topic><topic>Lysosomes - metabolism</topic><topic>Mechanistic Target of Rapamycin Complex 1 - metabolism</topic><topic>Mitosis</topic><topic>MTOR</topic><topic>MTORC1</topic><topic>Phosphorylation</topic><topic>PLK1</topic><topic>Polo-Like Kinase 1</topic><topic>Protein Binding</topic><topic>Protein Serine-Threonine Kinases - antagonists &amp; inhibitors</topic><topic>Protein Serine-Threonine Kinases - metabolism</topic><topic>Proto-Oncogene Proteins - antagonists &amp; inhibitors</topic><topic>Proto-Oncogene Proteins - metabolism</topic><topic>Regulatory-Associated Protein of mTOR - metabolism</topic><topic>RPTOR</topic><topic>starvation</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruf, Stefanie</creatorcontrib><creatorcontrib>Heberle, Alexander Martin</creatorcontrib><creatorcontrib>Langelaar-Makkinje, Miriam</creatorcontrib><creatorcontrib>Gelino, Sara</creatorcontrib><creatorcontrib>Wilkinson, Deepti</creatorcontrib><creatorcontrib>Gerbeth, Carolin</creatorcontrib><creatorcontrib>Schwarz, Jennifer Jasmin</creatorcontrib><creatorcontrib>Holzwarth, Birgit</creatorcontrib><creatorcontrib>Warscheid, Bettina</creatorcontrib><creatorcontrib>Meisinger, Chris</creatorcontrib><creatorcontrib>van Vugt, Marcel A. T. M.</creatorcontrib><creatorcontrib>Baumeister, Ralf</creatorcontrib><creatorcontrib>Hansen, Malene</creatorcontrib><creatorcontrib>Thedieck, Kathrin</creatorcontrib><collection>Access via Taylor &amp; Francis (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Autophagy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruf, Stefanie</au><au>Heberle, Alexander Martin</au><au>Langelaar-Makkinje, Miriam</au><au>Gelino, Sara</au><au>Wilkinson, Deepti</au><au>Gerbeth, Carolin</au><au>Schwarz, Jennifer Jasmin</au><au>Holzwarth, Birgit</au><au>Warscheid, Bettina</au><au>Meisinger, Chris</au><au>van Vugt, Marcel A. T. M.</au><au>Baumeister, Ralf</au><au>Hansen, Malene</au><au>Thedieck, Kathrin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PLK1 (polo like kinase 1) inhibits MTOR complex 1 and promotes autophagy</atitle><jtitle>Autophagy</jtitle><addtitle>Autophagy</addtitle><date>2017-03-04</date><risdate>2017</risdate><volume>13</volume><issue>3</issue><spage>486</spage><epage>505</epage><pages>486-505</pages><issn>1554-8627</issn><eissn>1554-8635</eissn><abstract>Mechanistic target of rapamycin complex 1 (MTORC1) and polo like kinase 1 (PLK1) are major drivers of cancer cell growth and proliferation, and inhibitors of both protein kinases are currently being investigated in clinical studies. To date, MTORC1′s and PLK1′s functions are mostly studied separately, and reports on their mutual crosstalk are scarce. Here, we identify PLK1 as a physical MTORC1 interactor in human cancer cells. PLK1 inhibition enhances MTORC1 activity under nutrient sufficiency and in starved cells, and PLK1 directly phosphorylates the MTORC1 component RPTOR/RAPTOR in vitro. PLK1 and MTORC1 reside together at lysosomes, the subcellular site where MTORC1 is active. Consistent with an inhibitory role of PLK1 toward MTORC1, PLK1 overexpression inhibits lysosomal association of the PLK1-MTORC1 complex, whereas PLK1 inhibition promotes lysosomal localization of MTOR. PLK1-MTORC1 binding is enhanced by amino acid starvation, a condition known to increase autophagy. MTORC1 inhibition is an important step in autophagy activation. Consistently, PLK1 inhibition mitigates autophagy in cancer cells both under nutrient starvation and sufficiency, and a role of PLK1 in autophagy is also observed in the invertebrate model organism Caenorhabditis elegans. In summary, PLK1 inhibits MTORC1 and thereby positively contributes to autophagy. Since autophagy is increasingly recognized to contribute to tumor cell survival and growth, we propose that cautious monitoring of MTORC1 and autophagy readouts in clinical trials with PLK1 inhibitors is needed to develop strategies for optimized (combinatorial) cancer therapies targeting MTORC1, PLK1, and autophagy.</abstract><cop>United States</cop><pub>Taylor &amp; Francis</pub><pmid>28102733</pmid><doi>10.1080/15548627.2016.1263781</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1554-8627
ispartof Autophagy, 2017-03, Vol.13 (3), p.486-505
issn 1554-8627
1554-8635
language eng
recordid cdi_proquest_miscellaneous_1861577577
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects amino acid
Amino Acids - deficiency
Amino Acids - metabolism
Animals
Autophagy
Basic Research Papers
BI2536
Biomarkers - metabolism
Caenorhabditis elegans - metabolism
Caenorhabditis elegans Proteins - metabolism
Cell Cycle Proteins - antagonists & inhibitors
Cell Cycle Proteins - metabolism
HeLa Cells
Humans
insulin
Interphase
lysosome
Lysosomes - metabolism
Mechanistic Target of Rapamycin Complex 1 - metabolism
Mitosis
MTOR
MTORC1
Phosphorylation
PLK1
Polo-Like Kinase 1
Protein Binding
Protein Serine-Threonine Kinases - antagonists & inhibitors
Protein Serine-Threonine Kinases - metabolism
Proto-Oncogene Proteins - antagonists & inhibitors
Proto-Oncogene Proteins - metabolism
Regulatory-Associated Protein of mTOR - metabolism
RPTOR
starvation
TOR Serine-Threonine Kinases - metabolism
title PLK1 (polo like kinase 1) inhibits MTOR complex 1 and promotes autophagy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A20%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PLK1%20(polo%20like%20kinase%201)%20inhibits%20MTOR%20complex%201%20and%20promotes%20autophagy&rft.jtitle=Autophagy&rft.au=Ruf,%20Stefanie&rft.date=2017-03-04&rft.volume=13&rft.issue=3&rft.spage=486&rft.epage=505&rft.pages=486-505&rft.issn=1554-8627&rft.eissn=1554-8635&rft_id=info:doi/10.1080/15548627.2016.1263781&rft_dat=%3Cproquest_infor%3E1861577577%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1861577577&rft_id=info:pmid/28102733&rfr_iscdi=true