Novel ECG‐Synchronized Pulsatile ECLS System With Various Heart Rates and Cardiac Arrhythmias: An In Vitro Study

The objective of this study is to evaluate electrocardiography (ECG)‐synchronized pulsatile flow under varying heart rates and different atrial and ventricular arrhythmias in a simulated extracorporeal life support (ECLS) system. The ECLS circuit consisted of an i‐cor diagonal pump and console, an i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial organs 2017-01, Vol.41 (1), p.55-65
Hauptverfasser: Wang, Shigang, Spencer, Shannon B., Kunselman, Allen R., Ündar, Akif
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 65
container_issue 1
container_start_page 55
container_title Artificial organs
container_volume 41
creator Wang, Shigang
Spencer, Shannon B.
Kunselman, Allen R.
Ündar, Akif
description The objective of this study is to evaluate electrocardiography (ECG)‐synchronized pulsatile flow under varying heart rates and different atrial and ventricular arrhythmias in a simulated extracorporeal life support (ECLS) system. The ECLS circuit consisted of an i‐cor diagonal pump and console, an iLA membrane ventilator, and an 18 Fr arterial cannula. The circuit was primed with lactated Ringer's solution and packed red blood cells (hematocrit 35%). An ECG simulator was used to trigger pulsatile flow and to generate selected cardiac rhythms. All trials were conducted at a flow rate of 2.5 L/min at room temperature for normal sinus rhythm at 45–180 bpm under non‐pulsatile and pulsatile modes. Various atrial and ventricular arrhythmias were also tested. Real‐time pressure and flow data were recorded using a custom‐based data acquisition system. The energy equivalent pressure (EEP) generated by pulsatile flow was always higher than the mean pressure. No surplus hemodynamic energy (SHE) was recorded under non‐pulsatile mode. Under pulsatile mode, SHE levels increased with increasing heart rates (45–120 bpm). SHE levels under a 1:2 assist ratio were higher than the 1:1 and 1:3 assist ratios with a heart rate of 180 bpm. A similar trend was recorded for total hemodynamic energy levels. There was no statistical difference between the two perfusion modes with regards to pressure drops across the ECLS circuit. The main resistance and energy loss came from the arterial cannula. The i‐cor console successfully tracked electrocardiographic signals of 12 atrial and ventricular arrhythmias. Our results demonstrated that the i‐cor pulsatile ECLS system can be synchronized with a normal heart rate or with various atrial/ventricular arrhythmias. Further in vivo studies are warranted to confirm our findings.
doi_str_mv 10.1111/aor.12904
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1861553310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1861553310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3194-1308fc434c3df6d7aeaff982f9d793558291067b1f6dc8f3751aa0578aa5c3e93</originalsourceid><addsrcrecordid>eNpdkctOwzAQRS0EouWx4AeQJTZsAnYcJza7KioFqQJEee2iaeKorvIotgMKKz6Bb-RLMM8Fs5mR7tHV6F6E9ig5on6OoTVHNJQkWkNDykMeUC6jdTQkNCYBj6OHAdqydkkISSISb6JBKIhkgrAhMhftk6rwOJ28v77N-iZfmLbRL6rAV11lwelKeXE6w7PeOlXje-0W-A6MbjuLzxQYh6_BKYuhKXAKptCQ45Exi94tag32BI8afN7gO-1Mi2euK_odtFFCZdXuz95Gt6fjm_QsmF5OztPRNMgZlVFAGRFlHrEoZ0UZFwkoKEspwlIWiWSci1BSEidz6sVclCzhFIDwRADwnCnJttHht-_KtI-dsi6rtc1VVUGj_PcZFTHlnDFKPHrwD122nWn8d57yWYZM0E_D_R-qm9eqyFZG12D67DdNDxx_A88-tv5PpyT7rCnzNWVfNWWjy-uvg30AptiD7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859423819</pqid></control><display><type>article</type><title>Novel ECG‐Synchronized Pulsatile ECLS System With Various Heart Rates and Cardiac Arrhythmias: An In Vitro Study</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Wang, Shigang ; Spencer, Shannon B. ; Kunselman, Allen R. ; Ündar, Akif</creator><creatorcontrib>Wang, Shigang ; Spencer, Shannon B. ; Kunselman, Allen R. ; Ündar, Akif</creatorcontrib><description>The objective of this study is to evaluate electrocardiography (ECG)‐synchronized pulsatile flow under varying heart rates and different atrial and ventricular arrhythmias in a simulated extracorporeal life support (ECLS) system. The ECLS circuit consisted of an i‐cor diagonal pump and console, an iLA membrane ventilator, and an 18 Fr arterial cannula. The circuit was primed with lactated Ringer's solution and packed red blood cells (hematocrit 35%). An ECG simulator was used to trigger pulsatile flow and to generate selected cardiac rhythms. All trials were conducted at a flow rate of 2.5 L/min at room temperature for normal sinus rhythm at 45–180 bpm under non‐pulsatile and pulsatile modes. Various atrial and ventricular arrhythmias were also tested. Real‐time pressure and flow data were recorded using a custom‐based data acquisition system. The energy equivalent pressure (EEP) generated by pulsatile flow was always higher than the mean pressure. No surplus hemodynamic energy (SHE) was recorded under non‐pulsatile mode. Under pulsatile mode, SHE levels increased with increasing heart rates (45–120 bpm). SHE levels under a 1:2 assist ratio were higher than the 1:1 and 1:3 assist ratios with a heart rate of 180 bpm. A similar trend was recorded for total hemodynamic energy levels. There was no statistical difference between the two perfusion modes with regards to pressure drops across the ECLS circuit. The main resistance and energy loss came from the arterial cannula. The i‐cor console successfully tracked electrocardiographic signals of 12 atrial and ventricular arrhythmias. Our results demonstrated that the i‐cor pulsatile ECLS system can be synchronized with a normal heart rate or with various atrial/ventricular arrhythmias. Further in vivo studies are warranted to confirm our findings.</description><identifier>ISSN: 0160-564X</identifier><identifier>EISSN: 1525-1594</identifier><identifier>DOI: 10.1111/aor.12904</identifier><identifier>PMID: 28093803</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Adult ; Arrhythmias, Cardiac - physiopathology ; Cardiac arrhythmia ; Diagonal pump ; Electrocardiography ; Electrocardiography - instrumentation ; Equipment Design ; Extracorporeal life support ; Extracorporeal Membrane Oxygenation - instrumentation ; Heart Rate ; Hemodynamics ; Humans ; Life Support Systems - instrumentation ; Pulsatile Flow</subject><ispartof>Artificial organs, 2017-01, Vol.41 (1), p.55-65</ispartof><rights>2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3194-1308fc434c3df6d7aeaff982f9d793558291067b1f6dc8f3751aa0578aa5c3e93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Faor.12904$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Faor.12904$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28093803$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Shigang</creatorcontrib><creatorcontrib>Spencer, Shannon B.</creatorcontrib><creatorcontrib>Kunselman, Allen R.</creatorcontrib><creatorcontrib>Ündar, Akif</creatorcontrib><title>Novel ECG‐Synchronized Pulsatile ECLS System With Various Heart Rates and Cardiac Arrhythmias: An In Vitro Study</title><title>Artificial organs</title><addtitle>Artif Organs</addtitle><description>The objective of this study is to evaluate electrocardiography (ECG)‐synchronized pulsatile flow under varying heart rates and different atrial and ventricular arrhythmias in a simulated extracorporeal life support (ECLS) system. The ECLS circuit consisted of an i‐cor diagonal pump and console, an iLA membrane ventilator, and an 18 Fr arterial cannula. The circuit was primed with lactated Ringer's solution and packed red blood cells (hematocrit 35%). An ECG simulator was used to trigger pulsatile flow and to generate selected cardiac rhythms. All trials were conducted at a flow rate of 2.5 L/min at room temperature for normal sinus rhythm at 45–180 bpm under non‐pulsatile and pulsatile modes. Various atrial and ventricular arrhythmias were also tested. Real‐time pressure and flow data were recorded using a custom‐based data acquisition system. The energy equivalent pressure (EEP) generated by pulsatile flow was always higher than the mean pressure. No surplus hemodynamic energy (SHE) was recorded under non‐pulsatile mode. Under pulsatile mode, SHE levels increased with increasing heart rates (45–120 bpm). SHE levels under a 1:2 assist ratio were higher than the 1:1 and 1:3 assist ratios with a heart rate of 180 bpm. A similar trend was recorded for total hemodynamic energy levels. There was no statistical difference between the two perfusion modes with regards to pressure drops across the ECLS circuit. The main resistance and energy loss came from the arterial cannula. The i‐cor console successfully tracked electrocardiographic signals of 12 atrial and ventricular arrhythmias. Our results demonstrated that the i‐cor pulsatile ECLS system can be synchronized with a normal heart rate or with various atrial/ventricular arrhythmias. Further in vivo studies are warranted to confirm our findings.</description><subject>Adult</subject><subject>Arrhythmias, Cardiac - physiopathology</subject><subject>Cardiac arrhythmia</subject><subject>Diagonal pump</subject><subject>Electrocardiography</subject><subject>Electrocardiography - instrumentation</subject><subject>Equipment Design</subject><subject>Extracorporeal life support</subject><subject>Extracorporeal Membrane Oxygenation - instrumentation</subject><subject>Heart Rate</subject><subject>Hemodynamics</subject><subject>Humans</subject><subject>Life Support Systems - instrumentation</subject><subject>Pulsatile Flow</subject><issn>0160-564X</issn><issn>1525-1594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkctOwzAQRS0EouWx4AeQJTZsAnYcJza7KioFqQJEee2iaeKorvIotgMKKz6Bb-RLMM8Fs5mR7tHV6F6E9ig5on6OoTVHNJQkWkNDykMeUC6jdTQkNCYBj6OHAdqydkkISSISb6JBKIhkgrAhMhftk6rwOJ28v77N-iZfmLbRL6rAV11lwelKeXE6w7PeOlXje-0W-A6MbjuLzxQYh6_BKYuhKXAKptCQ45Exi94tag32BI8afN7gO-1Mi2euK_odtFFCZdXuz95Gt6fjm_QsmF5OztPRNMgZlVFAGRFlHrEoZ0UZFwkoKEspwlIWiWSci1BSEidz6sVclCzhFIDwRADwnCnJttHht-_KtI-dsi6rtc1VVUGj_PcZFTHlnDFKPHrwD122nWn8d57yWYZM0E_D_R-qm9eqyFZG12D67DdNDxx_A88-tv5PpyT7rCnzNWVfNWWjy-uvg30AptiD7g</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Wang, Shigang</creator><creator>Spencer, Shannon B.</creator><creator>Kunselman, Allen R.</creator><creator>Ündar, Akif</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201701</creationdate><title>Novel ECG‐Synchronized Pulsatile ECLS System With Various Heart Rates and Cardiac Arrhythmias: An In Vitro Study</title><author>Wang, Shigang ; Spencer, Shannon B. ; Kunselman, Allen R. ; Ündar, Akif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3194-1308fc434c3df6d7aeaff982f9d793558291067b1f6dc8f3751aa0578aa5c3e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adult</topic><topic>Arrhythmias, Cardiac - physiopathology</topic><topic>Cardiac arrhythmia</topic><topic>Diagonal pump</topic><topic>Electrocardiography</topic><topic>Electrocardiography - instrumentation</topic><topic>Equipment Design</topic><topic>Extracorporeal life support</topic><topic>Extracorporeal Membrane Oxygenation - instrumentation</topic><topic>Heart Rate</topic><topic>Hemodynamics</topic><topic>Humans</topic><topic>Life Support Systems - instrumentation</topic><topic>Pulsatile Flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shigang</creatorcontrib><creatorcontrib>Spencer, Shannon B.</creatorcontrib><creatorcontrib>Kunselman, Allen R.</creatorcontrib><creatorcontrib>Ündar, Akif</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Artificial organs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shigang</au><au>Spencer, Shannon B.</au><au>Kunselman, Allen R.</au><au>Ündar, Akif</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel ECG‐Synchronized Pulsatile ECLS System With Various Heart Rates and Cardiac Arrhythmias: An In Vitro Study</atitle><jtitle>Artificial organs</jtitle><addtitle>Artif Organs</addtitle><date>2017-01</date><risdate>2017</risdate><volume>41</volume><issue>1</issue><spage>55</spage><epage>65</epage><pages>55-65</pages><issn>0160-564X</issn><eissn>1525-1594</eissn><abstract>The objective of this study is to evaluate electrocardiography (ECG)‐synchronized pulsatile flow under varying heart rates and different atrial and ventricular arrhythmias in a simulated extracorporeal life support (ECLS) system. The ECLS circuit consisted of an i‐cor diagonal pump and console, an iLA membrane ventilator, and an 18 Fr arterial cannula. The circuit was primed with lactated Ringer's solution and packed red blood cells (hematocrit 35%). An ECG simulator was used to trigger pulsatile flow and to generate selected cardiac rhythms. All trials were conducted at a flow rate of 2.5 L/min at room temperature for normal sinus rhythm at 45–180 bpm under non‐pulsatile and pulsatile modes. Various atrial and ventricular arrhythmias were also tested. Real‐time pressure and flow data were recorded using a custom‐based data acquisition system. The energy equivalent pressure (EEP) generated by pulsatile flow was always higher than the mean pressure. No surplus hemodynamic energy (SHE) was recorded under non‐pulsatile mode. Under pulsatile mode, SHE levels increased with increasing heart rates (45–120 bpm). SHE levels under a 1:2 assist ratio were higher than the 1:1 and 1:3 assist ratios with a heart rate of 180 bpm. A similar trend was recorded for total hemodynamic energy levels. There was no statistical difference between the two perfusion modes with regards to pressure drops across the ECLS circuit. The main resistance and energy loss came from the arterial cannula. The i‐cor console successfully tracked electrocardiographic signals of 12 atrial and ventricular arrhythmias. Our results demonstrated that the i‐cor pulsatile ECLS system can be synchronized with a normal heart rate or with various atrial/ventricular arrhythmias. Further in vivo studies are warranted to confirm our findings.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28093803</pmid><doi>10.1111/aor.12904</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0160-564X
ispartof Artificial organs, 2017-01, Vol.41 (1), p.55-65
issn 0160-564X
1525-1594
language eng
recordid cdi_proquest_miscellaneous_1861553310
source MEDLINE; Wiley Online Library All Journals
subjects Adult
Arrhythmias, Cardiac - physiopathology
Cardiac arrhythmia
Diagonal pump
Electrocardiography
Electrocardiography - instrumentation
Equipment Design
Extracorporeal life support
Extracorporeal Membrane Oxygenation - instrumentation
Heart Rate
Hemodynamics
Humans
Life Support Systems - instrumentation
Pulsatile Flow
title Novel ECG‐Synchronized Pulsatile ECLS System With Various Heart Rates and Cardiac Arrhythmias: An In Vitro Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A37%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20ECG%E2%80%90Synchronized%20Pulsatile%20ECLS%20System%20With%20Various%20Heart%20Rates%20and%20Cardiac%20Arrhythmias:%20An%20In%20Vitro%20Study&rft.jtitle=Artificial%20organs&rft.au=Wang,%20Shigang&rft.date=2017-01&rft.volume=41&rft.issue=1&rft.spage=55&rft.epage=65&rft.pages=55-65&rft.issn=0160-564X&rft.eissn=1525-1594&rft_id=info:doi/10.1111/aor.12904&rft_dat=%3Cproquest_pubme%3E1861553310%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859423819&rft_id=info:pmid/28093803&rfr_iscdi=true