A 200-1380-kHz Quadrifrequency Focused Ultrasound Transducer for Neurostimulation in Rodents and Primates: Transcranial In Vitro Calibration and Numerical Study of the Influence of Skull Cavity
Low intensity transcranial focused ultrasound has been demonstrated to produce neuromodulation in both animals and humans. Primarily for technical reasons, frequency is one of the most poorly investigated critical wave parameters. We propose the use of a quadri-band transducer capable of operating a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2017-04, Vol.64 (4), p.717-724 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 724 |
---|---|
container_issue | 4 |
container_start_page | 717 |
container_title | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
container_volume | 64 |
creator | Constans, Charlotte Deffieux, Thomas Pouget, Pierre Tanter, Mickael Aubry, Jean-Francois |
description | Low intensity transcranial focused ultrasound has been demonstrated to produce neuromodulation in both animals and humans. Primarily for technical reasons, frequency is one of the most poorly investigated critical wave parameters. We propose the use of a quadri-band transducer capable of operating at 200, 320, 850, and 1380 kHz for further investigation of the frequency dependence of neuromodulation efficacy while keeping the position of the transducer fixed with respect to the subject's head. This paper presents the results of the transducer calibration in water, in vitro transmission measurements through a monkey skull flap, 3-D simulations based on both a μ-computed tomography (μCT)-scan of a rat and on CT-scans of two macaques. A maximum peak pressure greater than 0.52 MPa is expected at each frequency in rat and macaque heads. According to the literature, our transducer can achieve neuromodulation in rodents and primates at each four frequencies. The impact of standing waves is shown to be most prominent at the lowest frequencies. |
doi_str_mv | 10.1109/TUFFC.2017.2651648 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1861544196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7814341</ieee_id><sourcerecordid>1861544196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-fc196a522b36ef4b6ca921abc2274a7f6ab71a9d4636ed5d7c5b0b4181eb9a0f3</originalsourceid><addsrcrecordid>eNpdkl1v0zAUhiMEYt3gD4CELHEDFynHjp3Eu6sqSidV42Mtt5HjOJo3Nx7-mNT9O_4ZDim94MaWznneo_PxZtkbDHOMgX_a7lar5ZwAruakZLik9bNshhlhec0Ze57NoK5ZXgCGs-zc-zsATCknL7MzUgMnrMCz7PcCEYAcFzXk9-sn9D2KzuneqV9RDfKAVlZGrzq0M8EJb-PQoa0Tg--iVA711qFrFZ31Qe-jEUHbAekB_bCdGoJHIuHfnN6LoPzlJJTp0cKgqwH91MFZtBRGt26Sjvx13CunZUJuQuwOyPYo3KrE92ZsSY2Bm_toTFI-6nB4lb3ohfHq9fG_yHarz9vlOt98_XK1XGxyyQBC3kvMS8EIaYtS9bQtpeAEi1YSUlFR9aVoKyx4R8uU71hXSdZCS3GNVcsF9MVF9nGqeytM8zAO5Q6NFbpZLzbNGAMKJfCCP-LEfpjYB2fTIn1o9tpLZYwYlI2-wXWJGaWpo4S-_w-9s9ENaZJE1UXBKGeQKDJRMu3aO9WfOsDQjGZo_pqhGc3QHM2QRO-OpWO7V91J8u_6CXg7AVopdUpXNaYFxcUf2qq5_Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1883354950</pqid></control><display><type>article</type><title>A 200-1380-kHz Quadrifrequency Focused Ultrasound Transducer for Neurostimulation in Rodents and Primates: Transcranial In Vitro Calibration and Numerical Study of the Influence of Skull Cavity</title><source>IEEE Electronic Library (IEL)</source><creator>Constans, Charlotte ; Deffieux, Thomas ; Pouget, Pierre ; Tanter, Mickael ; Aubry, Jean-Francois</creator><creatorcontrib>Constans, Charlotte ; Deffieux, Thomas ; Pouget, Pierre ; Tanter, Mickael ; Aubry, Jean-Francois</creatorcontrib><description>Low intensity transcranial focused ultrasound has been demonstrated to produce neuromodulation in both animals and humans. Primarily for technical reasons, frequency is one of the most poorly investigated critical wave parameters. We propose the use of a quadri-band transducer capable of operating at 200, 320, 850, and 1380 kHz for further investigation of the frequency dependence of neuromodulation efficacy while keeping the position of the transducer fixed with respect to the subject's head. This paper presents the results of the transducer calibration in water, in vitro transmission measurements through a monkey skull flap, 3-D simulations based on both a μ-computed tomography (μCT)-scan of a rat and on CT-scans of two macaques. A maximum peak pressure greater than 0.52 MPa is expected at each frequency in rat and macaque heads. According to the literature, our transducer can achieve neuromodulation in rodents and primates at each four frequencies. The impact of standing waves is shown to be most prominent at the lowest frequencies.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2017.2651648</identifier><identifier>PMID: 28092531</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Acoustics ; Animals ; Brain modeling ; Calibration ; Computed tomography ; Computer Simulation ; Engineering Sciences ; Equipment Design ; Female ; Frequency measurement ; General physical acoustics ; Macaca ; Male ; medical transducers ; Peak pressure ; Position measurement ; Pressure head ; Primates ; Rats ; Rodents ; Skull ; Skull - physiology ; Standing waves ; system and device design ; therapeutics ; Transducers ; Ultrasonic imaging ; Ultrasonic Therapy - instrumentation ; Ultrasonic variables measurement</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2017-04, Vol.64 (4), p.717-724</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-fc196a522b36ef4b6ca921abc2274a7f6ab71a9d4636ed5d7c5b0b4181eb9a0f3</citedby><cites>FETCH-LOGICAL-c500t-fc196a522b36ef4b6ca921abc2274a7f6ab71a9d4636ed5d7c5b0b4181eb9a0f3</cites><orcidid>0000-0001-6378-9158 ; 0000-0003-2644-3945 ; 0000-0002-4721-7376</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7814341$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7814341$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28092531$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04060939$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Constans, Charlotte</creatorcontrib><creatorcontrib>Deffieux, Thomas</creatorcontrib><creatorcontrib>Pouget, Pierre</creatorcontrib><creatorcontrib>Tanter, Mickael</creatorcontrib><creatorcontrib>Aubry, Jean-Francois</creatorcontrib><title>A 200-1380-kHz Quadrifrequency Focused Ultrasound Transducer for Neurostimulation in Rodents and Primates: Transcranial In Vitro Calibration and Numerical Study of the Influence of Skull Cavity</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>Low intensity transcranial focused ultrasound has been demonstrated to produce neuromodulation in both animals and humans. Primarily for technical reasons, frequency is one of the most poorly investigated critical wave parameters. We propose the use of a quadri-band transducer capable of operating at 200, 320, 850, and 1380 kHz for further investigation of the frequency dependence of neuromodulation efficacy while keeping the position of the transducer fixed with respect to the subject's head. This paper presents the results of the transducer calibration in water, in vitro transmission measurements through a monkey skull flap, 3-D simulations based on both a μ-computed tomography (μCT)-scan of a rat and on CT-scans of two macaques. A maximum peak pressure greater than 0.52 MPa is expected at each frequency in rat and macaque heads. According to the literature, our transducer can achieve neuromodulation in rodents and primates at each four frequencies. The impact of standing waves is shown to be most prominent at the lowest frequencies.</description><subject>Acoustics</subject><subject>Animals</subject><subject>Brain modeling</subject><subject>Calibration</subject><subject>Computed tomography</subject><subject>Computer Simulation</subject><subject>Engineering Sciences</subject><subject>Equipment Design</subject><subject>Female</subject><subject>Frequency measurement</subject><subject>General physical acoustics</subject><subject>Macaca</subject><subject>Male</subject><subject>medical transducers</subject><subject>Peak pressure</subject><subject>Position measurement</subject><subject>Pressure head</subject><subject>Primates</subject><subject>Rats</subject><subject>Rodents</subject><subject>Skull</subject><subject>Skull - physiology</subject><subject>Standing waves</subject><subject>system and device design</subject><subject>therapeutics</subject><subject>Transducers</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonic Therapy - instrumentation</subject><subject>Ultrasonic variables measurement</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkl1v0zAUhiMEYt3gD4CELHEDFynHjp3Eu6sqSidV42Mtt5HjOJo3Nx7-mNT9O_4ZDim94MaWznneo_PxZtkbDHOMgX_a7lar5ZwAruakZLik9bNshhlhec0Ze57NoK5ZXgCGs-zc-zsATCknL7MzUgMnrMCz7PcCEYAcFzXk9-sn9D2KzuneqV9RDfKAVlZGrzq0M8EJb-PQoa0Tg--iVA711qFrFZ31Qe-jEUHbAekB_bCdGoJHIuHfnN6LoPzlJJTp0cKgqwH91MFZtBRGt26Sjvx13CunZUJuQuwOyPYo3KrE92ZsSY2Bm_toTFI-6nB4lb3ohfHq9fG_yHarz9vlOt98_XK1XGxyyQBC3kvMS8EIaYtS9bQtpeAEi1YSUlFR9aVoKyx4R8uU71hXSdZCS3GNVcsF9MVF9nGqeytM8zAO5Q6NFbpZLzbNGAMKJfCCP-LEfpjYB2fTIn1o9tpLZYwYlI2-wXWJGaWpo4S-_w-9s9ENaZJE1UXBKGeQKDJRMu3aO9WfOsDQjGZo_pqhGc3QHM2QRO-OpWO7V91J8u_6CXg7AVopdUpXNaYFxcUf2qq5_Q</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Constans, Charlotte</creator><creator>Deffieux, Thomas</creator><creator>Pouget, Pierre</creator><creator>Tanter, Mickael</creator><creator>Aubry, Jean-Francois</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-6378-9158</orcidid><orcidid>https://orcid.org/0000-0003-2644-3945</orcidid><orcidid>https://orcid.org/0000-0002-4721-7376</orcidid></search><sort><creationdate>20170401</creationdate><title>A 200-1380-kHz Quadrifrequency Focused Ultrasound Transducer for Neurostimulation in Rodents and Primates: Transcranial In Vitro Calibration and Numerical Study of the Influence of Skull Cavity</title><author>Constans, Charlotte ; Deffieux, Thomas ; Pouget, Pierre ; Tanter, Mickael ; Aubry, Jean-Francois</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-fc196a522b36ef4b6ca921abc2274a7f6ab71a9d4636ed5d7c5b0b4181eb9a0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acoustics</topic><topic>Animals</topic><topic>Brain modeling</topic><topic>Calibration</topic><topic>Computed tomography</topic><topic>Computer Simulation</topic><topic>Engineering Sciences</topic><topic>Equipment Design</topic><topic>Female</topic><topic>Frequency measurement</topic><topic>General physical acoustics</topic><topic>Macaca</topic><topic>Male</topic><topic>medical transducers</topic><topic>Peak pressure</topic><topic>Position measurement</topic><topic>Pressure head</topic><topic>Primates</topic><topic>Rats</topic><topic>Rodents</topic><topic>Skull</topic><topic>Skull - physiology</topic><topic>Standing waves</topic><topic>system and device design</topic><topic>therapeutics</topic><topic>Transducers</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonic Therapy - instrumentation</topic><topic>Ultrasonic variables measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Constans, Charlotte</creatorcontrib><creatorcontrib>Deffieux, Thomas</creatorcontrib><creatorcontrib>Pouget, Pierre</creatorcontrib><creatorcontrib>Tanter, Mickael</creatorcontrib><creatorcontrib>Aubry, Jean-Francois</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Constans, Charlotte</au><au>Deffieux, Thomas</au><au>Pouget, Pierre</au><au>Tanter, Mickael</au><au>Aubry, Jean-Francois</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 200-1380-kHz Quadrifrequency Focused Ultrasound Transducer for Neurostimulation in Rodents and Primates: Transcranial In Vitro Calibration and Numerical Study of the Influence of Skull Cavity</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2017-04-01</date><risdate>2017</risdate><volume>64</volume><issue>4</issue><spage>717</spage><epage>724</epage><pages>717-724</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>Low intensity transcranial focused ultrasound has been demonstrated to produce neuromodulation in both animals and humans. Primarily for technical reasons, frequency is one of the most poorly investigated critical wave parameters. We propose the use of a quadri-band transducer capable of operating at 200, 320, 850, and 1380 kHz for further investigation of the frequency dependence of neuromodulation efficacy while keeping the position of the transducer fixed with respect to the subject's head. This paper presents the results of the transducer calibration in water, in vitro transmission measurements through a monkey skull flap, 3-D simulations based on both a μ-computed tomography (μCT)-scan of a rat and on CT-scans of two macaques. A maximum peak pressure greater than 0.52 MPa is expected at each frequency in rat and macaque heads. According to the literature, our transducer can achieve neuromodulation in rodents and primates at each four frequencies. The impact of standing waves is shown to be most prominent at the lowest frequencies.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28092531</pmid><doi>10.1109/TUFFC.2017.2651648</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6378-9158</orcidid><orcidid>https://orcid.org/0000-0003-2644-3945</orcidid><orcidid>https://orcid.org/0000-0002-4721-7376</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-3010 |
ispartof | IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2017-04, Vol.64 (4), p.717-724 |
issn | 0885-3010 1525-8955 |
language | eng |
recordid | cdi_proquest_miscellaneous_1861544196 |
source | IEEE Electronic Library (IEL) |
subjects | Acoustics Animals Brain modeling Calibration Computed tomography Computer Simulation Engineering Sciences Equipment Design Female Frequency measurement General physical acoustics Macaca Male medical transducers Peak pressure Position measurement Pressure head Primates Rats Rodents Skull Skull - physiology Standing waves system and device design therapeutics Transducers Ultrasonic imaging Ultrasonic Therapy - instrumentation Ultrasonic variables measurement |
title | A 200-1380-kHz Quadrifrequency Focused Ultrasound Transducer for Neurostimulation in Rodents and Primates: Transcranial In Vitro Calibration and Numerical Study of the Influence of Skull Cavity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A31%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20200-1380-kHz%20Quadrifrequency%20Focused%20Ultrasound%20Transducer%20for%20Neurostimulation%20in%20Rodents%20and%20Primates:%20Transcranial%20In%20Vitro%20Calibration%20and%20Numerical%20Study%20of%20the%20Influence%20of%20Skull%20Cavity&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Constans,%20Charlotte&rft.date=2017-04-01&rft.volume=64&rft.issue=4&rft.spage=717&rft.epage=724&rft.pages=717-724&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2017.2651648&rft_dat=%3Cproquest_RIE%3E1861544196%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1883354950&rft_id=info:pmid/28092531&rft_ieee_id=7814341&rfr_iscdi=true |