A 200-1380-kHz Quadrifrequency Focused Ultrasound Transducer for Neurostimulation in Rodents and Primates: Transcranial In Vitro Calibration and Numerical Study of the Influence of Skull Cavity

Low intensity transcranial focused ultrasound has been demonstrated to produce neuromodulation in both animals and humans. Primarily for technical reasons, frequency is one of the most poorly investigated critical wave parameters. We propose the use of a quadri-band transducer capable of operating a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2017-04, Vol.64 (4), p.717-724
Hauptverfasser: Constans, Charlotte, Deffieux, Thomas, Pouget, Pierre, Tanter, Mickael, Aubry, Jean-Francois
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 724
container_issue 4
container_start_page 717
container_title IEEE transactions on ultrasonics, ferroelectrics, and frequency control
container_volume 64
creator Constans, Charlotte
Deffieux, Thomas
Pouget, Pierre
Tanter, Mickael
Aubry, Jean-Francois
description Low intensity transcranial focused ultrasound has been demonstrated to produce neuromodulation in both animals and humans. Primarily for technical reasons, frequency is one of the most poorly investigated critical wave parameters. We propose the use of a quadri-band transducer capable of operating at 200, 320, 850, and 1380 kHz for further investigation of the frequency dependence of neuromodulation efficacy while keeping the position of the transducer fixed with respect to the subject's head. This paper presents the results of the transducer calibration in water, in vitro transmission measurements through a monkey skull flap, 3-D simulations based on both a μ-computed tomography (μCT)-scan of a rat and on CT-scans of two macaques. A maximum peak pressure greater than 0.52 MPa is expected at each frequency in rat and macaque heads. According to the literature, our transducer can achieve neuromodulation in rodents and primates at each four frequencies. The impact of standing waves is shown to be most prominent at the lowest frequencies.
doi_str_mv 10.1109/TUFFC.2017.2651648
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1861544196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7814341</ieee_id><sourcerecordid>1861544196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-fc196a522b36ef4b6ca921abc2274a7f6ab71a9d4636ed5d7c5b0b4181eb9a0f3</originalsourceid><addsrcrecordid>eNpdkl1v0zAUhiMEYt3gD4CELHEDFynHjp3Eu6sqSidV42Mtt5HjOJo3Nx7-mNT9O_4ZDim94MaWznneo_PxZtkbDHOMgX_a7lar5ZwAruakZLik9bNshhlhec0Ze57NoK5ZXgCGs-zc-zsATCknL7MzUgMnrMCz7PcCEYAcFzXk9-sn9D2KzuneqV9RDfKAVlZGrzq0M8EJb-PQoa0Tg--iVA711qFrFZ31Qe-jEUHbAekB_bCdGoJHIuHfnN6LoPzlJJTp0cKgqwH91MFZtBRGt26Sjvx13CunZUJuQuwOyPYo3KrE92ZsSY2Bm_toTFI-6nB4lb3ohfHq9fG_yHarz9vlOt98_XK1XGxyyQBC3kvMS8EIaYtS9bQtpeAEi1YSUlFR9aVoKyx4R8uU71hXSdZCS3GNVcsF9MVF9nGqeytM8zAO5Q6NFbpZLzbNGAMKJfCCP-LEfpjYB2fTIn1o9tpLZYwYlI2-wXWJGaWpo4S-_w-9s9ENaZJE1UXBKGeQKDJRMu3aO9WfOsDQjGZo_pqhGc3QHM2QRO-OpWO7V91J8u_6CXg7AVopdUpXNaYFxcUf2qq5_Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1883354950</pqid></control><display><type>article</type><title>A 200-1380-kHz Quadrifrequency Focused Ultrasound Transducer for Neurostimulation in Rodents and Primates: Transcranial In Vitro Calibration and Numerical Study of the Influence of Skull Cavity</title><source>IEEE Electronic Library (IEL)</source><creator>Constans, Charlotte ; Deffieux, Thomas ; Pouget, Pierre ; Tanter, Mickael ; Aubry, Jean-Francois</creator><creatorcontrib>Constans, Charlotte ; Deffieux, Thomas ; Pouget, Pierre ; Tanter, Mickael ; Aubry, Jean-Francois</creatorcontrib><description>Low intensity transcranial focused ultrasound has been demonstrated to produce neuromodulation in both animals and humans. Primarily for technical reasons, frequency is one of the most poorly investigated critical wave parameters. We propose the use of a quadri-band transducer capable of operating at 200, 320, 850, and 1380 kHz for further investigation of the frequency dependence of neuromodulation efficacy while keeping the position of the transducer fixed with respect to the subject's head. This paper presents the results of the transducer calibration in water, in vitro transmission measurements through a monkey skull flap, 3-D simulations based on both a μ-computed tomography (μCT)-scan of a rat and on CT-scans of two macaques. A maximum peak pressure greater than 0.52 MPa is expected at each frequency in rat and macaque heads. According to the literature, our transducer can achieve neuromodulation in rodents and primates at each four frequencies. The impact of standing waves is shown to be most prominent at the lowest frequencies.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2017.2651648</identifier><identifier>PMID: 28092531</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Acoustics ; Animals ; Brain modeling ; Calibration ; Computed tomography ; Computer Simulation ; Engineering Sciences ; Equipment Design ; Female ; Frequency measurement ; General physical acoustics ; Macaca ; Male ; medical transducers ; Peak pressure ; Position measurement ; Pressure head ; Primates ; Rats ; Rodents ; Skull ; Skull - physiology ; Standing waves ; system and device design ; therapeutics ; Transducers ; Ultrasonic imaging ; Ultrasonic Therapy - instrumentation ; Ultrasonic variables measurement</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2017-04, Vol.64 (4), p.717-724</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-fc196a522b36ef4b6ca921abc2274a7f6ab71a9d4636ed5d7c5b0b4181eb9a0f3</citedby><cites>FETCH-LOGICAL-c500t-fc196a522b36ef4b6ca921abc2274a7f6ab71a9d4636ed5d7c5b0b4181eb9a0f3</cites><orcidid>0000-0001-6378-9158 ; 0000-0003-2644-3945 ; 0000-0002-4721-7376</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7814341$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7814341$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28092531$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04060939$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Constans, Charlotte</creatorcontrib><creatorcontrib>Deffieux, Thomas</creatorcontrib><creatorcontrib>Pouget, Pierre</creatorcontrib><creatorcontrib>Tanter, Mickael</creatorcontrib><creatorcontrib>Aubry, Jean-Francois</creatorcontrib><title>A 200-1380-kHz Quadrifrequency Focused Ultrasound Transducer for Neurostimulation in Rodents and Primates: Transcranial In Vitro Calibration and Numerical Study of the Influence of Skull Cavity</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>Low intensity transcranial focused ultrasound has been demonstrated to produce neuromodulation in both animals and humans. Primarily for technical reasons, frequency is one of the most poorly investigated critical wave parameters. We propose the use of a quadri-band transducer capable of operating at 200, 320, 850, and 1380 kHz for further investigation of the frequency dependence of neuromodulation efficacy while keeping the position of the transducer fixed with respect to the subject's head. This paper presents the results of the transducer calibration in water, in vitro transmission measurements through a monkey skull flap, 3-D simulations based on both a μ-computed tomography (μCT)-scan of a rat and on CT-scans of two macaques. A maximum peak pressure greater than 0.52 MPa is expected at each frequency in rat and macaque heads. According to the literature, our transducer can achieve neuromodulation in rodents and primates at each four frequencies. The impact of standing waves is shown to be most prominent at the lowest frequencies.</description><subject>Acoustics</subject><subject>Animals</subject><subject>Brain modeling</subject><subject>Calibration</subject><subject>Computed tomography</subject><subject>Computer Simulation</subject><subject>Engineering Sciences</subject><subject>Equipment Design</subject><subject>Female</subject><subject>Frequency measurement</subject><subject>General physical acoustics</subject><subject>Macaca</subject><subject>Male</subject><subject>medical transducers</subject><subject>Peak pressure</subject><subject>Position measurement</subject><subject>Pressure head</subject><subject>Primates</subject><subject>Rats</subject><subject>Rodents</subject><subject>Skull</subject><subject>Skull - physiology</subject><subject>Standing waves</subject><subject>system and device design</subject><subject>therapeutics</subject><subject>Transducers</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonic Therapy - instrumentation</subject><subject>Ultrasonic variables measurement</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkl1v0zAUhiMEYt3gD4CELHEDFynHjp3Eu6sqSidV42Mtt5HjOJo3Nx7-mNT9O_4ZDim94MaWznneo_PxZtkbDHOMgX_a7lar5ZwAruakZLik9bNshhlhec0Ze57NoK5ZXgCGs-zc-zsATCknL7MzUgMnrMCz7PcCEYAcFzXk9-sn9D2KzuneqV9RDfKAVlZGrzq0M8EJb-PQoa0Tg--iVA711qFrFZ31Qe-jEUHbAekB_bCdGoJHIuHfnN6LoPzlJJTp0cKgqwH91MFZtBRGt26Sjvx13CunZUJuQuwOyPYo3KrE92ZsSY2Bm_toTFI-6nB4lb3ohfHq9fG_yHarz9vlOt98_XK1XGxyyQBC3kvMS8EIaYtS9bQtpeAEi1YSUlFR9aVoKyx4R8uU71hXSdZCS3GNVcsF9MVF9nGqeytM8zAO5Q6NFbpZLzbNGAMKJfCCP-LEfpjYB2fTIn1o9tpLZYwYlI2-wXWJGaWpo4S-_w-9s9ENaZJE1UXBKGeQKDJRMu3aO9WfOsDQjGZo_pqhGc3QHM2QRO-OpWO7V91J8u_6CXg7AVopdUpXNaYFxcUf2qq5_Q</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Constans, Charlotte</creator><creator>Deffieux, Thomas</creator><creator>Pouget, Pierre</creator><creator>Tanter, Mickael</creator><creator>Aubry, Jean-Francois</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-6378-9158</orcidid><orcidid>https://orcid.org/0000-0003-2644-3945</orcidid><orcidid>https://orcid.org/0000-0002-4721-7376</orcidid></search><sort><creationdate>20170401</creationdate><title>A 200-1380-kHz Quadrifrequency Focused Ultrasound Transducer for Neurostimulation in Rodents and Primates: Transcranial In Vitro Calibration and Numerical Study of the Influence of Skull Cavity</title><author>Constans, Charlotte ; Deffieux, Thomas ; Pouget, Pierre ; Tanter, Mickael ; Aubry, Jean-Francois</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-fc196a522b36ef4b6ca921abc2274a7f6ab71a9d4636ed5d7c5b0b4181eb9a0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acoustics</topic><topic>Animals</topic><topic>Brain modeling</topic><topic>Calibration</topic><topic>Computed tomography</topic><topic>Computer Simulation</topic><topic>Engineering Sciences</topic><topic>Equipment Design</topic><topic>Female</topic><topic>Frequency measurement</topic><topic>General physical acoustics</topic><topic>Macaca</topic><topic>Male</topic><topic>medical transducers</topic><topic>Peak pressure</topic><topic>Position measurement</topic><topic>Pressure head</topic><topic>Primates</topic><topic>Rats</topic><topic>Rodents</topic><topic>Skull</topic><topic>Skull - physiology</topic><topic>Standing waves</topic><topic>system and device design</topic><topic>therapeutics</topic><topic>Transducers</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonic Therapy - instrumentation</topic><topic>Ultrasonic variables measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Constans, Charlotte</creatorcontrib><creatorcontrib>Deffieux, Thomas</creatorcontrib><creatorcontrib>Pouget, Pierre</creatorcontrib><creatorcontrib>Tanter, Mickael</creatorcontrib><creatorcontrib>Aubry, Jean-Francois</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Constans, Charlotte</au><au>Deffieux, Thomas</au><au>Pouget, Pierre</au><au>Tanter, Mickael</au><au>Aubry, Jean-Francois</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 200-1380-kHz Quadrifrequency Focused Ultrasound Transducer for Neurostimulation in Rodents and Primates: Transcranial In Vitro Calibration and Numerical Study of the Influence of Skull Cavity</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2017-04-01</date><risdate>2017</risdate><volume>64</volume><issue>4</issue><spage>717</spage><epage>724</epage><pages>717-724</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>Low intensity transcranial focused ultrasound has been demonstrated to produce neuromodulation in both animals and humans. Primarily for technical reasons, frequency is one of the most poorly investigated critical wave parameters. We propose the use of a quadri-band transducer capable of operating at 200, 320, 850, and 1380 kHz for further investigation of the frequency dependence of neuromodulation efficacy while keeping the position of the transducer fixed with respect to the subject's head. This paper presents the results of the transducer calibration in water, in vitro transmission measurements through a monkey skull flap, 3-D simulations based on both a μ-computed tomography (μCT)-scan of a rat and on CT-scans of two macaques. A maximum peak pressure greater than 0.52 MPa is expected at each frequency in rat and macaque heads. According to the literature, our transducer can achieve neuromodulation in rodents and primates at each four frequencies. The impact of standing waves is shown to be most prominent at the lowest frequencies.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28092531</pmid><doi>10.1109/TUFFC.2017.2651648</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6378-9158</orcidid><orcidid>https://orcid.org/0000-0003-2644-3945</orcidid><orcidid>https://orcid.org/0000-0002-4721-7376</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-3010
ispartof IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2017-04, Vol.64 (4), p.717-724
issn 0885-3010
1525-8955
language eng
recordid cdi_proquest_miscellaneous_1861544196
source IEEE Electronic Library (IEL)
subjects Acoustics
Animals
Brain modeling
Calibration
Computed tomography
Computer Simulation
Engineering Sciences
Equipment Design
Female
Frequency measurement
General physical acoustics
Macaca
Male
medical transducers
Peak pressure
Position measurement
Pressure head
Primates
Rats
Rodents
Skull
Skull - physiology
Standing waves
system and device design
therapeutics
Transducers
Ultrasonic imaging
Ultrasonic Therapy - instrumentation
Ultrasonic variables measurement
title A 200-1380-kHz Quadrifrequency Focused Ultrasound Transducer for Neurostimulation in Rodents and Primates: Transcranial In Vitro Calibration and Numerical Study of the Influence of Skull Cavity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A31%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20200-1380-kHz%20Quadrifrequency%20Focused%20Ultrasound%20Transducer%20for%20Neurostimulation%20in%20Rodents%20and%20Primates:%20Transcranial%20In%20Vitro%20Calibration%20and%20Numerical%20Study%20of%20the%20Influence%20of%20Skull%20Cavity&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Constans,%20Charlotte&rft.date=2017-04-01&rft.volume=64&rft.issue=4&rft.spage=717&rft.epage=724&rft.pages=717-724&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2017.2651648&rft_dat=%3Cproquest_RIE%3E1861544196%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1883354950&rft_id=info:pmid/28092531&rft_ieee_id=7814341&rfr_iscdi=true