Beta-Binomial Model for the Detection of Rare Mutations in Pooled Next-Generation Sequencing Experiments

Against diminishing costs, next-generation sequencing (NGS) still remains expensive for studies with a large number of individuals. As cost saving, sequencing genome of pools containing multiple samples might be used. Currently, there are many software available for the detection of single-nucleotid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational biology 2017-04, Vol.24 (4), p.357-367
Hauptverfasser: Jakaitiene, Audrone, Avino, Mariano, Guarracino, Mario Rosario
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 367
container_issue 4
container_start_page 357
container_title Journal of computational biology
container_volume 24
creator Jakaitiene, Audrone
Avino, Mariano
Guarracino, Mario Rosario
description Against diminishing costs, next-generation sequencing (NGS) still remains expensive for studies with a large number of individuals. As cost saving, sequencing genome of pools containing multiple samples might be used. Currently, there are many software available for the detection of single-nucleotide polymorphisms (SNPs). Sensitivity and specificity depend on the model used and data analyzed, indicating that all software have space for improvement. We use beta-binomial model to detect rare mutations in untagged pooled NGS experiments. We propose a multireference framework for pooled data with ability being specific up to two patients affected by neuromuscular disorders (NMD). We assessed the results comparing with The Genome Analysis Toolkit (GATK), CRISP, SNVer, and FreeBayes. Our results show that the multireference approach applying beta-binomial model is accurate in predicting rare mutations at 0.01 fraction. Finally, we explored the concordance of mutations between the model and software, checking their involvement in any NMD-related gene. We detected seven novel SNPs, for which the functional analysis produced enriched terms related to locomotion and musculature.
doi_str_mv 10.1089/cmb.2016.0106
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1859724699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859724699</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-3fb1772f2686f4132b7bb5f478035651a5b0187c757dc0a5b681f3c4e595e4733</originalsourceid><addsrcrecordid>eNpNkDtPwzAURi0EoqUwsiKPLCl-xHYy0lIKUguIxxw57jUNSuISO1L59yS0IKb7Orr6dBA6p2RMSZJemSofM0LlmFAiD9CQCqGiREp5-K8foBPvPwihXBJ1jAZMSc4kT4ZoPYGgo0lRu6rQJV66FZTYugaHNeAbCGBC4WrsLH7WDeBlG3S_8Lio8ZNzJazwA2xDNIcamp8TfoHPFmpT1O94tt1AU1RQB3-KjqwuPZzt6wi93c5ep3fR4nF-P71eRIalPETc5lQpZplMpI0pZ7nKc2FjlRAupKBa5IQmyiihVoZ0k0yo5SYGkQqIFecjdLn7u2lcl8OHrCq8gbLUNbjWZzQRqWKxTNMOjXaoaZz3Ddhs04XVzVdGSdbLzTq5WS836-V2_MX-dZtXsPqjf23ybzCjdMk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859724699</pqid></control><display><type>article</type><title>Beta-Binomial Model for the Detection of Rare Mutations in Pooled Next-Generation Sequencing Experiments</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Jakaitiene, Audrone ; Avino, Mariano ; Guarracino, Mario Rosario</creator><creatorcontrib>Jakaitiene, Audrone ; Avino, Mariano ; Guarracino, Mario Rosario</creatorcontrib><description>Against diminishing costs, next-generation sequencing (NGS) still remains expensive for studies with a large number of individuals. As cost saving, sequencing genome of pools containing multiple samples might be used. Currently, there are many software available for the detection of single-nucleotide polymorphisms (SNPs). Sensitivity and specificity depend on the model used and data analyzed, indicating that all software have space for improvement. We use beta-binomial model to detect rare mutations in untagged pooled NGS experiments. We propose a multireference framework for pooled data with ability being specific up to two patients affected by neuromuscular disorders (NMD). We assessed the results comparing with The Genome Analysis Toolkit (GATK), CRISP, SNVer, and FreeBayes. Our results show that the multireference approach applying beta-binomial model is accurate in predicting rare mutations at 0.01 fraction. Finally, we explored the concordance of mutations between the model and software, checking their involvement in any NMD-related gene. We detected seven novel SNPs, for which the functional analysis produced enriched terms related to locomotion and musculature.</description><identifier>ISSN: 1557-8666</identifier><identifier>EISSN: 1557-8666</identifier><identifier>DOI: 10.1089/cmb.2016.0106</identifier><identifier>PMID: 27632638</identifier><language>eng</language><publisher>United States</publisher><subject>Algorithms ; High-Throughput Nucleotide Sequencing - methods ; Humans ; Models, Statistical ; Mutation ; Polymorphism, Single Nucleotide ; Sequence Analysis, DNA - methods ; Software</subject><ispartof>Journal of computational biology, 2017-04, Vol.24 (4), p.357-367</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-3fb1772f2686f4132b7bb5f478035651a5b0187c757dc0a5b681f3c4e595e4733</citedby><cites>FETCH-LOGICAL-c293t-3fb1772f2686f4132b7bb5f478035651a5b0187c757dc0a5b681f3c4e595e4733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27632638$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jakaitiene, Audrone</creatorcontrib><creatorcontrib>Avino, Mariano</creatorcontrib><creatorcontrib>Guarracino, Mario Rosario</creatorcontrib><title>Beta-Binomial Model for the Detection of Rare Mutations in Pooled Next-Generation Sequencing Experiments</title><title>Journal of computational biology</title><addtitle>J Comput Biol</addtitle><description>Against diminishing costs, next-generation sequencing (NGS) still remains expensive for studies with a large number of individuals. As cost saving, sequencing genome of pools containing multiple samples might be used. Currently, there are many software available for the detection of single-nucleotide polymorphisms (SNPs). Sensitivity and specificity depend on the model used and data analyzed, indicating that all software have space for improvement. We use beta-binomial model to detect rare mutations in untagged pooled NGS experiments. We propose a multireference framework for pooled data with ability being specific up to two patients affected by neuromuscular disorders (NMD). We assessed the results comparing with The Genome Analysis Toolkit (GATK), CRISP, SNVer, and FreeBayes. Our results show that the multireference approach applying beta-binomial model is accurate in predicting rare mutations at 0.01 fraction. Finally, we explored the concordance of mutations between the model and software, checking their involvement in any NMD-related gene. We detected seven novel SNPs, for which the functional analysis produced enriched terms related to locomotion and musculature.</description><subject>Algorithms</subject><subject>High-Throughput Nucleotide Sequencing - methods</subject><subject>Humans</subject><subject>Models, Statistical</subject><subject>Mutation</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Sequence Analysis, DNA - methods</subject><subject>Software</subject><issn>1557-8666</issn><issn>1557-8666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkDtPwzAURi0EoqUwsiKPLCl-xHYy0lIKUguIxxw57jUNSuISO1L59yS0IKb7Orr6dBA6p2RMSZJemSofM0LlmFAiD9CQCqGiREp5-K8foBPvPwihXBJ1jAZMSc4kT4ZoPYGgo0lRu6rQJV66FZTYugaHNeAbCGBC4WrsLH7WDeBlG3S_8Lio8ZNzJazwA2xDNIcamp8TfoHPFmpT1O94tt1AU1RQB3-KjqwuPZzt6wi93c5ep3fR4nF-P71eRIalPETc5lQpZplMpI0pZ7nKc2FjlRAupKBa5IQmyiihVoZ0k0yo5SYGkQqIFecjdLn7u2lcl8OHrCq8gbLUNbjWZzQRqWKxTNMOjXaoaZz3Ddhs04XVzVdGSdbLzTq5WS836-V2_MX-dZtXsPqjf23ybzCjdMk</recordid><startdate>201704</startdate><enddate>201704</enddate><creator>Jakaitiene, Audrone</creator><creator>Avino, Mariano</creator><creator>Guarracino, Mario Rosario</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201704</creationdate><title>Beta-Binomial Model for the Detection of Rare Mutations in Pooled Next-Generation Sequencing Experiments</title><author>Jakaitiene, Audrone ; Avino, Mariano ; Guarracino, Mario Rosario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-3fb1772f2686f4132b7bb5f478035651a5b0187c757dc0a5b681f3c4e595e4733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>High-Throughput Nucleotide Sequencing - methods</topic><topic>Humans</topic><topic>Models, Statistical</topic><topic>Mutation</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Sequence Analysis, DNA - methods</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jakaitiene, Audrone</creatorcontrib><creatorcontrib>Avino, Mariano</creatorcontrib><creatorcontrib>Guarracino, Mario Rosario</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jakaitiene, Audrone</au><au>Avino, Mariano</au><au>Guarracino, Mario Rosario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beta-Binomial Model for the Detection of Rare Mutations in Pooled Next-Generation Sequencing Experiments</atitle><jtitle>Journal of computational biology</jtitle><addtitle>J Comput Biol</addtitle><date>2017-04</date><risdate>2017</risdate><volume>24</volume><issue>4</issue><spage>357</spage><epage>367</epage><pages>357-367</pages><issn>1557-8666</issn><eissn>1557-8666</eissn><abstract>Against diminishing costs, next-generation sequencing (NGS) still remains expensive for studies with a large number of individuals. As cost saving, sequencing genome of pools containing multiple samples might be used. Currently, there are many software available for the detection of single-nucleotide polymorphisms (SNPs). Sensitivity and specificity depend on the model used and data analyzed, indicating that all software have space for improvement. We use beta-binomial model to detect rare mutations in untagged pooled NGS experiments. We propose a multireference framework for pooled data with ability being specific up to two patients affected by neuromuscular disorders (NMD). We assessed the results comparing with The Genome Analysis Toolkit (GATK), CRISP, SNVer, and FreeBayes. Our results show that the multireference approach applying beta-binomial model is accurate in predicting rare mutations at 0.01 fraction. Finally, we explored the concordance of mutations between the model and software, checking their involvement in any NMD-related gene. We detected seven novel SNPs, for which the functional analysis produced enriched terms related to locomotion and musculature.</abstract><cop>United States</cop><pmid>27632638</pmid><doi>10.1089/cmb.2016.0106</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1557-8666
ispartof Journal of computational biology, 2017-04, Vol.24 (4), p.357-367
issn 1557-8666
1557-8666
language eng
recordid cdi_proquest_miscellaneous_1859724699
source MEDLINE; Alma/SFX Local Collection
subjects Algorithms
High-Throughput Nucleotide Sequencing - methods
Humans
Models, Statistical
Mutation
Polymorphism, Single Nucleotide
Sequence Analysis, DNA - methods
Software
title Beta-Binomial Model for the Detection of Rare Mutations in Pooled Next-Generation Sequencing Experiments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A23%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beta-Binomial%20Model%20for%20the%20Detection%20of%20Rare%20Mutations%20in%20Pooled%20Next-Generation%20Sequencing%20Experiments&rft.jtitle=Journal%20of%20computational%20biology&rft.au=Jakaitiene,%20Audrone&rft.date=2017-04&rft.volume=24&rft.issue=4&rft.spage=357&rft.epage=367&rft.pages=357-367&rft.issn=1557-8666&rft.eissn=1557-8666&rft_id=info:doi/10.1089/cmb.2016.0106&rft_dat=%3Cproquest_cross%3E1859724699%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859724699&rft_id=info:pmid/27632638&rfr_iscdi=true