A Closed-Loop Model of Operator Visual Attention, Situation Awareness, and Performance Across Automation Mode Transitions
Objective: This article describes a closed-loop, integrated human–vehicle model designed to help understand the underlying cognitive processes that influenced changes in subject visual attention, mental workload, and situation awareness across control mode transitions in a simulated human-in-the-loo...
Gespeichert in:
Veröffentlicht in: | Human factors 2017-03, Vol.59 (2), p.229-241 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 241 |
---|---|
container_issue | 2 |
container_start_page | 229 |
container_title | Human factors |
container_volume | 59 |
creator | Johnson, Aaron W. Duda, Kevin R. Sheridan, Thomas B. Oman, Charles M. |
description | Objective:
This article describes a closed-loop, integrated human–vehicle model designed to help understand the underlying cognitive processes that influenced changes in subject visual attention, mental workload, and situation awareness across control mode transitions in a simulated human-in-the-loop lunar landing experiment.
Background:
Control mode transitions from autopilot to manual flight may cause total attentional demands to exceed operator capacity. Attentional resources must be reallocated and reprioritized, which can increase the average uncertainty in the operator’s estimates of low-priority system states. We define this increase in uncertainty as a reduction in situation awareness.
Method:
We present a model built upon the optimal control model for state estimation, the crossover model for manual control, and the SEEV (salience, effort, expectancy, value) model for visual attention. We modify the SEEV attention executive to direct visual attention based, in part, on the uncertainty in the operator’s estimates of system states.
Results:
The model was validated using the simulated lunar landing experimental data, demonstrating an average difference in the percentage of attention ≤3.6% for all simulator instruments. The model’s predictions of mental workload and situation awareness, measured by task performance and system state uncertainty, also mimicked the experimental data.
Conclusion:
Our model supports the hypothesis that visual attention is influenced by the uncertainty in system state estimates.
Application:
Conceptualizing situation awareness around the metric of system state uncertainty is a valuable way for system designers to understand and predict how reallocations in the operator’s visual attention during control mode transitions can produce reallocations in situation awareness of certain states. |
doi_str_mv | 10.1177/0018720816665759 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1859714833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0018720816665759</sage_id><sourcerecordid>1923707701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-862530b2f2b2166ae91b25dde2b597b7a8f0c23f903a0b5ba6b92ed252b6b30e3</originalsourceid><addsrcrecordid>eNp1kc9LwzAUx4Mobv64e5KAFw-rviRL0x7L8BdMJji9lqR9lUrbzKRF9t_buiky8JSE93mfl8eXkDMGV4wpdQ3AIsUhYmEYSiXjPTJmcqqCiEVsn4yHcjDUR-TI-3cACGMhD8mI9yzjoMZkndBZZT3mwdzaFX20OVbUFnSxQqdb6-hr6Ttd0aRtsWlL20zoc9l2erjS5FM7bND7CdVNTp_QFdbVusmQJpmz3tOka229gQc1XTrd-HJ4-xNyUOjK4-n2PCYvtzfL2X0wX9w9zJJ5kE2ZaIMo5FKA4QU3vF9TY8wMl3mO3MhYGaWjAjIuihiEBiONDk3MMeeSm9AIQHFMLjfelbMfHfo2rUufYVXpBm3nUxb1HjaNhOjRix303Xau6X-XspgLBUoB6ynYUN8rOizSlStr7dYpg3SIJd2NpW8534o7U2P-2_CTQw8EG8DrN_wz9T_hF4ivlHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1923707701</pqid></control><display><type>article</type><title>A Closed-Loop Model of Operator Visual Attention, Situation Awareness, and Performance Across Automation Mode Transitions</title><source>Access via SAGE</source><source>MEDLINE</source><creator>Johnson, Aaron W. ; Duda, Kevin R. ; Sheridan, Thomas B. ; Oman, Charles M.</creator><creatorcontrib>Johnson, Aaron W. ; Duda, Kevin R. ; Sheridan, Thomas B. ; Oman, Charles M.</creatorcontrib><description>Objective:
This article describes a closed-loop, integrated human–vehicle model designed to help understand the underlying cognitive processes that influenced changes in subject visual attention, mental workload, and situation awareness across control mode transitions in a simulated human-in-the-loop lunar landing experiment.
Background:
Control mode transitions from autopilot to manual flight may cause total attentional demands to exceed operator capacity. Attentional resources must be reallocated and reprioritized, which can increase the average uncertainty in the operator’s estimates of low-priority system states. We define this increase in uncertainty as a reduction in situation awareness.
Method:
We present a model built upon the optimal control model for state estimation, the crossover model for manual control, and the SEEV (salience, effort, expectancy, value) model for visual attention. We modify the SEEV attention executive to direct visual attention based, in part, on the uncertainty in the operator’s estimates of system states.
Results:
The model was validated using the simulated lunar landing experimental data, demonstrating an average difference in the percentage of attention ≤3.6% for all simulator instruments. The model’s predictions of mental workload and situation awareness, measured by task performance and system state uncertainty, also mimicked the experimental data.
Conclusion:
Our model supports the hypothesis that visual attention is influenced by the uncertainty in system state estimates.
Application:
Conceptualizing situation awareness around the metric of system state uncertainty is a valuable way for system designers to understand and predict how reallocations in the operator’s visual attention during control mode transitions can produce reallocations in situation awareness of certain states.</description><identifier>ISSN: 0018-7208</identifier><identifier>EISSN: 1547-8181</identifier><identifier>DOI: 10.1177/0018720816665759</identifier><identifier>PMID: 27591207</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Attention ; Attention - physiology ; Automation ; Awareness - physiology ; Cognitive ability ; Computer simulation ; Data processing ; Estimates ; Expectancy ; Experimental data ; Humans ; Landing behavior ; Lunar landing ; Man-Machine Systems ; Manual control ; Mathematical models ; Models, Theoretical ; Optimal control ; Simulation ; Situational awareness ; Space life sciences ; State estimation ; Task Performance and Analysis ; Uncertainty ; Visual perception ; Visual Perception - physiology ; Visual task performance ; Workload ; Workloads</subject><ispartof>Human factors, 2017-03, Vol.59 (2), p.229-241</ispartof><rights>2016, Human Factors and Ergonomics Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-862530b2f2b2166ae91b25dde2b597b7a8f0c23f903a0b5ba6b92ed252b6b30e3</citedby><cites>FETCH-LOGICAL-c413t-862530b2f2b2166ae91b25dde2b597b7a8f0c23f903a0b5ba6b92ed252b6b30e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0018720816665759$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0018720816665759$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27591207$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Johnson, Aaron W.</creatorcontrib><creatorcontrib>Duda, Kevin R.</creatorcontrib><creatorcontrib>Sheridan, Thomas B.</creatorcontrib><creatorcontrib>Oman, Charles M.</creatorcontrib><title>A Closed-Loop Model of Operator Visual Attention, Situation Awareness, and Performance Across Automation Mode Transitions</title><title>Human factors</title><addtitle>Hum Factors</addtitle><description>Objective:
This article describes a closed-loop, integrated human–vehicle model designed to help understand the underlying cognitive processes that influenced changes in subject visual attention, mental workload, and situation awareness across control mode transitions in a simulated human-in-the-loop lunar landing experiment.
Background:
Control mode transitions from autopilot to manual flight may cause total attentional demands to exceed operator capacity. Attentional resources must be reallocated and reprioritized, which can increase the average uncertainty in the operator’s estimates of low-priority system states. We define this increase in uncertainty as a reduction in situation awareness.
Method:
We present a model built upon the optimal control model for state estimation, the crossover model for manual control, and the SEEV (salience, effort, expectancy, value) model for visual attention. We modify the SEEV attention executive to direct visual attention based, in part, on the uncertainty in the operator’s estimates of system states.
Results:
The model was validated using the simulated lunar landing experimental data, demonstrating an average difference in the percentage of attention ≤3.6% for all simulator instruments. The model’s predictions of mental workload and situation awareness, measured by task performance and system state uncertainty, also mimicked the experimental data.
Conclusion:
Our model supports the hypothesis that visual attention is influenced by the uncertainty in system state estimates.
Application:
Conceptualizing situation awareness around the metric of system state uncertainty is a valuable way for system designers to understand and predict how reallocations in the operator’s visual attention during control mode transitions can produce reallocations in situation awareness of certain states.</description><subject>Attention</subject><subject>Attention - physiology</subject><subject>Automation</subject><subject>Awareness - physiology</subject><subject>Cognitive ability</subject><subject>Computer simulation</subject><subject>Data processing</subject><subject>Estimates</subject><subject>Expectancy</subject><subject>Experimental data</subject><subject>Humans</subject><subject>Landing behavior</subject><subject>Lunar landing</subject><subject>Man-Machine Systems</subject><subject>Manual control</subject><subject>Mathematical models</subject><subject>Models, Theoretical</subject><subject>Optimal control</subject><subject>Simulation</subject><subject>Situational awareness</subject><subject>Space life sciences</subject><subject>State estimation</subject><subject>Task Performance and Analysis</subject><subject>Uncertainty</subject><subject>Visual perception</subject><subject>Visual Perception - physiology</subject><subject>Visual task performance</subject><subject>Workload</subject><subject>Workloads</subject><issn>0018-7208</issn><issn>1547-8181</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9LwzAUx4Mobv64e5KAFw-rviRL0x7L8BdMJji9lqR9lUrbzKRF9t_buiky8JSE93mfl8eXkDMGV4wpdQ3AIsUhYmEYSiXjPTJmcqqCiEVsn4yHcjDUR-TI-3cACGMhD8mI9yzjoMZkndBZZT3mwdzaFX20OVbUFnSxQqdb6-hr6Ttd0aRtsWlL20zoc9l2erjS5FM7bND7CdVNTp_QFdbVusmQJpmz3tOka229gQc1XTrd-HJ4-xNyUOjK4-n2PCYvtzfL2X0wX9w9zJJ5kE2ZaIMo5FKA4QU3vF9TY8wMl3mO3MhYGaWjAjIuihiEBiONDk3MMeeSm9AIQHFMLjfelbMfHfo2rUufYVXpBm3nUxb1HjaNhOjRix303Xau6X-XspgLBUoB6ynYUN8rOizSlStr7dYpg3SIJd2NpW8534o7U2P-2_CTQw8EG8DrN_wz9T_hF4ivlHQ</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Johnson, Aaron W.</creator><creator>Duda, Kevin R.</creator><creator>Sheridan, Thomas B.</creator><creator>Oman, Charles M.</creator><general>SAGE Publications</general><general>Human Factors and Ergonomics Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T2</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20170301</creationdate><title>A Closed-Loop Model of Operator Visual Attention, Situation Awareness, and Performance Across Automation Mode Transitions</title><author>Johnson, Aaron W. ; Duda, Kevin R. ; Sheridan, Thomas B. ; Oman, Charles M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-862530b2f2b2166ae91b25dde2b597b7a8f0c23f903a0b5ba6b92ed252b6b30e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Attention</topic><topic>Attention - physiology</topic><topic>Automation</topic><topic>Awareness - physiology</topic><topic>Cognitive ability</topic><topic>Computer simulation</topic><topic>Data processing</topic><topic>Estimates</topic><topic>Expectancy</topic><topic>Experimental data</topic><topic>Humans</topic><topic>Landing behavior</topic><topic>Lunar landing</topic><topic>Man-Machine Systems</topic><topic>Manual control</topic><topic>Mathematical models</topic><topic>Models, Theoretical</topic><topic>Optimal control</topic><topic>Simulation</topic><topic>Situational awareness</topic><topic>Space life sciences</topic><topic>State estimation</topic><topic>Task Performance and Analysis</topic><topic>Uncertainty</topic><topic>Visual perception</topic><topic>Visual Perception - physiology</topic><topic>Visual task performance</topic><topic>Workload</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, Aaron W.</creatorcontrib><creatorcontrib>Duda, Kevin R.</creatorcontrib><creatorcontrib>Sheridan, Thomas B.</creatorcontrib><creatorcontrib>Oman, Charles M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Human factors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, Aaron W.</au><au>Duda, Kevin R.</au><au>Sheridan, Thomas B.</au><au>Oman, Charles M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Closed-Loop Model of Operator Visual Attention, Situation Awareness, and Performance Across Automation Mode Transitions</atitle><jtitle>Human factors</jtitle><addtitle>Hum Factors</addtitle><date>2017-03-01</date><risdate>2017</risdate><volume>59</volume><issue>2</issue><spage>229</spage><epage>241</epage><pages>229-241</pages><issn>0018-7208</issn><eissn>1547-8181</eissn><abstract>Objective:
This article describes a closed-loop, integrated human–vehicle model designed to help understand the underlying cognitive processes that influenced changes in subject visual attention, mental workload, and situation awareness across control mode transitions in a simulated human-in-the-loop lunar landing experiment.
Background:
Control mode transitions from autopilot to manual flight may cause total attentional demands to exceed operator capacity. Attentional resources must be reallocated and reprioritized, which can increase the average uncertainty in the operator’s estimates of low-priority system states. We define this increase in uncertainty as a reduction in situation awareness.
Method:
We present a model built upon the optimal control model for state estimation, the crossover model for manual control, and the SEEV (salience, effort, expectancy, value) model for visual attention. We modify the SEEV attention executive to direct visual attention based, in part, on the uncertainty in the operator’s estimates of system states.
Results:
The model was validated using the simulated lunar landing experimental data, demonstrating an average difference in the percentage of attention ≤3.6% for all simulator instruments. The model’s predictions of mental workload and situation awareness, measured by task performance and system state uncertainty, also mimicked the experimental data.
Conclusion:
Our model supports the hypothesis that visual attention is influenced by the uncertainty in system state estimates.
Application:
Conceptualizing situation awareness around the metric of system state uncertainty is a valuable way for system designers to understand and predict how reallocations in the operator’s visual attention during control mode transitions can produce reallocations in situation awareness of certain states.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>27591207</pmid><doi>10.1177/0018720816665759</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-7208 |
ispartof | Human factors, 2017-03, Vol.59 (2), p.229-241 |
issn | 0018-7208 1547-8181 |
language | eng |
recordid | cdi_proquest_miscellaneous_1859714833 |
source | Access via SAGE; MEDLINE |
subjects | Attention Attention - physiology Automation Awareness - physiology Cognitive ability Computer simulation Data processing Estimates Expectancy Experimental data Humans Landing behavior Lunar landing Man-Machine Systems Manual control Mathematical models Models, Theoretical Optimal control Simulation Situational awareness Space life sciences State estimation Task Performance and Analysis Uncertainty Visual perception Visual Perception - physiology Visual task performance Workload Workloads |
title | A Closed-Loop Model of Operator Visual Attention, Situation Awareness, and Performance Across Automation Mode Transitions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A49%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Closed-Loop%20Model%20of%20Operator%20Visual%20Attention,%20Situation%20Awareness,%20and%20Performance%20Across%20Automation%20Mode%20Transitions&rft.jtitle=Human%20factors&rft.au=Johnson,%20Aaron%20W.&rft.date=2017-03-01&rft.volume=59&rft.issue=2&rft.spage=229&rft.epage=241&rft.pages=229-241&rft.issn=0018-7208&rft.eissn=1547-8181&rft_id=info:doi/10.1177/0018720816665759&rft_dat=%3Cproquest_cross%3E1923707701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1923707701&rft_id=info:pmid/27591207&rft_sage_id=10.1177_0018720816665759&rfr_iscdi=true |