Rolling‐circle amplification of centromeric Helitrons in plant genomes

Summary The unusual eukaryotic Helitron transposons can readily capture host sequences and are, thus, evolutionarily important. They are presumed to amplify by rolling‐circle replication (RCR) because some elements encode predicted proteins homologous to RCR prokaryotic transposases. In support of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant journal : for cell and molecular biology 2016-12, Vol.88 (6), p.1038-1045
Hauptverfasser: Xiong, Wenwei, Dooner, Hugo K., Du, Chunguang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1045
container_issue 6
container_start_page 1038
container_title The Plant journal : for cell and molecular biology
container_volume 88
creator Xiong, Wenwei
Dooner, Hugo K.
Du, Chunguang
description Summary The unusual eukaryotic Helitron transposons can readily capture host sequences and are, thus, evolutionarily important. They are presumed to amplify by rolling‐circle replication (RCR) because some elements encode predicted proteins homologous to RCR prokaryotic transposases. In support of this replication mechanism, it was recently shown that transposition of a bat Helitron generates covalently closed circular intermediates. Another strong prediction is that RCR should generate tandem Helitron concatemers, yet almost all Helitrons identified to date occur as solo elements in the genome. To investigate alternative modes of Helitron organization in present‐day genomes, we have applied the novel computational tool HelitronScanner to 27 plant genomes and have uncovered numerous tandem arrays of partially decayed, truncated Helitrons in all of them. Strikingly, most of these Helitron tandem arrays are interspersed with other repeats in centromeres. Many of these arrays have multiple Helitron 5′ ends, but a single 3′ end. The number of repeats in any one array can range from a handful to several hundreds. We propose here an RCR model that conforms to the present Helitron landscape of plant genomes. Our study provides strong evidence that plant Helitrons amplify by RCR and that the tandemly arrayed replication products accumulate mostly in centromeres. Significance Statement Helitron transposons can capture gene fragments and move them around the genome and thus have played an important role in shaping eukaryotic genomes, but their mode of transposition was unclear. Here we used an automated computational tool that enabled the discovery of a large cache of previously overlooked Helitrons in many genomes. We propose a rolling‐circle replication model that accounts for the different Helitron distributions found in current plant genomes. As many tandem array Helitrons locate preferentially to centromeres, we suggest that they might have contributed to the growth of plant centromeres.
doi_str_mv 10.1111/tpj.13314
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1859500498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4289613901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4894-cbf51f5af0a0259f36d96962cd042e9ce1d2cacc3fe23cf6ac64fb1ac5ecf8ff3</originalsourceid><addsrcrecordid>eNqN0c1KHTEYBuAgLZ5TdeENyEA3dTGe_M9kKVI9LUKLWOgu5HyTSA6ZH5MZxJ2X4DX2Spo62kVBbDYh5OHNF16EDgk-IXmtxmF7QhgjfActCZOiZIT9fIeWWElcVpzQBfqQ0hZjUjHJd9GCVkIwyfgSra_6EHx38-vhEXyEYAvTDsE7D2b0fVf0rgDbjbFvbfRQrG3w-dClwnfFEEw3Fje2y5dpH713JiR78LzvoR_nn6_P1uXlt4svZ6eXJfBa8RI2ThAnjMMGU6Eck42SSlJoMKdWgSUNBQPAnKUMnDQgudsQA8KCq51je-jTnDvE_nayadStT2BDnsX2U9KkFkpgzFX9H5QJWdWyrjL9-A_d9lPs8kc0pZITgt9Q-VmOlcJCZXU8K4h9StE6PUTfmnivCdZ_-tK5L_3UV7ZHz4nTprXNX_lSUAarGdz5YO9fT9LX37_Okb8B9X-fvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1854099059</pqid></control><display><type>article</type><title>Rolling‐circle amplification of centromeric Helitrons in plant genomes</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>IngentaConnect Free/Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Xiong, Wenwei ; Dooner, Hugo K. ; Du, Chunguang</creator><creatorcontrib>Xiong, Wenwei ; Dooner, Hugo K. ; Du, Chunguang</creatorcontrib><description>Summary The unusual eukaryotic Helitron transposons can readily capture host sequences and are, thus, evolutionarily important. They are presumed to amplify by rolling‐circle replication (RCR) because some elements encode predicted proteins homologous to RCR prokaryotic transposases. In support of this replication mechanism, it was recently shown that transposition of a bat Helitron generates covalently closed circular intermediates. Another strong prediction is that RCR should generate tandem Helitron concatemers, yet almost all Helitrons identified to date occur as solo elements in the genome. To investigate alternative modes of Helitron organization in present‐day genomes, we have applied the novel computational tool HelitronScanner to 27 plant genomes and have uncovered numerous tandem arrays of partially decayed, truncated Helitrons in all of them. Strikingly, most of these Helitron tandem arrays are interspersed with other repeats in centromeres. Many of these arrays have multiple Helitron 5′ ends, but a single 3′ end. The number of repeats in any one array can range from a handful to several hundreds. We propose here an RCR model that conforms to the present Helitron landscape of plant genomes. Our study provides strong evidence that plant Helitrons amplify by RCR and that the tandemly arrayed replication products accumulate mostly in centromeres. Significance Statement Helitron transposons can capture gene fragments and move them around the genome and thus have played an important role in shaping eukaryotic genomes, but their mode of transposition was unclear. Here we used an automated computational tool that enabled the discovery of a large cache of previously overlooked Helitrons in many genomes. We propose a rolling‐circle replication model that accounts for the different Helitron distributions found in current plant genomes. As many tandem array Helitrons locate preferentially to centromeres, we suggest that they might have contributed to the growth of plant centromeres.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/tpj.13314</identifier><identifier>PMID: 27553634</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Amplification ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis thaliana ; Arrays ; Botany ; centromere ; Centromere - genetics ; Centromere - metabolism ; Centromeres ; Computer applications ; Concatamers ; DNA Transposable Elements - genetics ; Gene sequencing ; Genome, Plant - genetics ; Genomes ; Genomics ; Helitron ; Helitrons ; Homology ; Intermediates ; Oryza sativa ; Plant growth ; Predictions ; Replication ; rolling‐circle replication (RCR) ; Software ; tandem repeat ; Tandem Repeat Sequences - genetics ; Transposition ; transposon ; Transposons ; Zea mays</subject><ispartof>The Plant journal : for cell and molecular biology, 2016-12, Vol.88 (6), p.1038-1045</ispartof><rights>2016 The Authors The Plant Journal © 2016 John Wiley &amp; Sons Ltd</rights><rights>2016 The Authors The Plant Journal © 2016 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2016 John Wiley &amp; Sons Ltd and the Society for Experimental Biology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4894-cbf51f5af0a0259f36d96962cd042e9ce1d2cacc3fe23cf6ac64fb1ac5ecf8ff3</citedby><cites>FETCH-LOGICAL-c4894-cbf51f5af0a0259f36d96962cd042e9ce1d2cacc3fe23cf6ac64fb1ac5ecf8ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftpj.13314$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftpj.13314$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27553634$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiong, Wenwei</creatorcontrib><creatorcontrib>Dooner, Hugo K.</creatorcontrib><creatorcontrib>Du, Chunguang</creatorcontrib><title>Rolling‐circle amplification of centromeric Helitrons in plant genomes</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>Summary The unusual eukaryotic Helitron transposons can readily capture host sequences and are, thus, evolutionarily important. They are presumed to amplify by rolling‐circle replication (RCR) because some elements encode predicted proteins homologous to RCR prokaryotic transposases. In support of this replication mechanism, it was recently shown that transposition of a bat Helitron generates covalently closed circular intermediates. Another strong prediction is that RCR should generate tandem Helitron concatemers, yet almost all Helitrons identified to date occur as solo elements in the genome. To investigate alternative modes of Helitron organization in present‐day genomes, we have applied the novel computational tool HelitronScanner to 27 plant genomes and have uncovered numerous tandem arrays of partially decayed, truncated Helitrons in all of them. Strikingly, most of these Helitron tandem arrays are interspersed with other repeats in centromeres. Many of these arrays have multiple Helitron 5′ ends, but a single 3′ end. The number of repeats in any one array can range from a handful to several hundreds. We propose here an RCR model that conforms to the present Helitron landscape of plant genomes. Our study provides strong evidence that plant Helitrons amplify by RCR and that the tandemly arrayed replication products accumulate mostly in centromeres. Significance Statement Helitron transposons can capture gene fragments and move them around the genome and thus have played an important role in shaping eukaryotic genomes, but their mode of transposition was unclear. Here we used an automated computational tool that enabled the discovery of a large cache of previously overlooked Helitrons in many genomes. We propose a rolling‐circle replication model that accounts for the different Helitron distributions found in current plant genomes. As many tandem array Helitrons locate preferentially to centromeres, we suggest that they might have contributed to the growth of plant centromeres.</description><subject>Amplification</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Arrays</subject><subject>Botany</subject><subject>centromere</subject><subject>Centromere - genetics</subject><subject>Centromere - metabolism</subject><subject>Centromeres</subject><subject>Computer applications</subject><subject>Concatamers</subject><subject>DNA Transposable Elements - genetics</subject><subject>Gene sequencing</subject><subject>Genome, Plant - genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Helitron</subject><subject>Helitrons</subject><subject>Homology</subject><subject>Intermediates</subject><subject>Oryza sativa</subject><subject>Plant growth</subject><subject>Predictions</subject><subject>Replication</subject><subject>rolling‐circle replication (RCR)</subject><subject>Software</subject><subject>tandem repeat</subject><subject>Tandem Repeat Sequences - genetics</subject><subject>Transposition</subject><subject>transposon</subject><subject>Transposons</subject><subject>Zea mays</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0c1KHTEYBuAgLZ5TdeENyEA3dTGe_M9kKVI9LUKLWOgu5HyTSA6ZH5MZxJ2X4DX2Spo62kVBbDYh5OHNF16EDgk-IXmtxmF7QhgjfActCZOiZIT9fIeWWElcVpzQBfqQ0hZjUjHJd9GCVkIwyfgSra_6EHx38-vhEXyEYAvTDsE7D2b0fVf0rgDbjbFvbfRQrG3w-dClwnfFEEw3Fje2y5dpH713JiR78LzvoR_nn6_P1uXlt4svZ6eXJfBa8RI2ThAnjMMGU6Eck42SSlJoMKdWgSUNBQPAnKUMnDQgudsQA8KCq51je-jTnDvE_nayadStT2BDnsX2U9KkFkpgzFX9H5QJWdWyrjL9-A_d9lPs8kc0pZITgt9Q-VmOlcJCZXU8K4h9StE6PUTfmnivCdZ_-tK5L_3UV7ZHz4nTprXNX_lSUAarGdz5YO9fT9LX37_Okb8B9X-fvw</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Xiong, Wenwei</creator><creator>Dooner, Hugo K.</creator><creator>Du, Chunguang</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201612</creationdate><title>Rolling‐circle amplification of centromeric Helitrons in plant genomes</title><author>Xiong, Wenwei ; Dooner, Hugo K. ; Du, Chunguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4894-cbf51f5af0a0259f36d96962cd042e9ce1d2cacc3fe23cf6ac64fb1ac5ecf8ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amplification</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Arrays</topic><topic>Botany</topic><topic>centromere</topic><topic>Centromere - genetics</topic><topic>Centromere - metabolism</topic><topic>Centromeres</topic><topic>Computer applications</topic><topic>Concatamers</topic><topic>DNA Transposable Elements - genetics</topic><topic>Gene sequencing</topic><topic>Genome, Plant - genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Helitron</topic><topic>Helitrons</topic><topic>Homology</topic><topic>Intermediates</topic><topic>Oryza sativa</topic><topic>Plant growth</topic><topic>Predictions</topic><topic>Replication</topic><topic>rolling‐circle replication (RCR)</topic><topic>Software</topic><topic>tandem repeat</topic><topic>Tandem Repeat Sequences - genetics</topic><topic>Transposition</topic><topic>transposon</topic><topic>Transposons</topic><topic>Zea mays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Wenwei</creatorcontrib><creatorcontrib>Dooner, Hugo K.</creatorcontrib><creatorcontrib>Du, Chunguang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Wenwei</au><au>Dooner, Hugo K.</au><au>Du, Chunguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rolling‐circle amplification of centromeric Helitrons in plant genomes</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2016-12</date><risdate>2016</risdate><volume>88</volume><issue>6</issue><spage>1038</spage><epage>1045</epage><pages>1038-1045</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>Summary The unusual eukaryotic Helitron transposons can readily capture host sequences and are, thus, evolutionarily important. They are presumed to amplify by rolling‐circle replication (RCR) because some elements encode predicted proteins homologous to RCR prokaryotic transposases. In support of this replication mechanism, it was recently shown that transposition of a bat Helitron generates covalently closed circular intermediates. Another strong prediction is that RCR should generate tandem Helitron concatemers, yet almost all Helitrons identified to date occur as solo elements in the genome. To investigate alternative modes of Helitron organization in present‐day genomes, we have applied the novel computational tool HelitronScanner to 27 plant genomes and have uncovered numerous tandem arrays of partially decayed, truncated Helitrons in all of them. Strikingly, most of these Helitron tandem arrays are interspersed with other repeats in centromeres. Many of these arrays have multiple Helitron 5′ ends, but a single 3′ end. The number of repeats in any one array can range from a handful to several hundreds. We propose here an RCR model that conforms to the present Helitron landscape of plant genomes. Our study provides strong evidence that plant Helitrons amplify by RCR and that the tandemly arrayed replication products accumulate mostly in centromeres. Significance Statement Helitron transposons can capture gene fragments and move them around the genome and thus have played an important role in shaping eukaryotic genomes, but their mode of transposition was unclear. Here we used an automated computational tool that enabled the discovery of a large cache of previously overlooked Helitrons in many genomes. We propose a rolling‐circle replication model that accounts for the different Helitron distributions found in current plant genomes. As many tandem array Helitrons locate preferentially to centromeres, we suggest that they might have contributed to the growth of plant centromeres.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>27553634</pmid><doi>10.1111/tpj.13314</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-7412
ispartof The Plant journal : for cell and molecular biology, 2016-12, Vol.88 (6), p.1038-1045
issn 0960-7412
1365-313X
language eng
recordid cdi_proquest_miscellaneous_1859500498
source MEDLINE; Access via Wiley Online Library; IngentaConnect Free/Open Access Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection)
subjects Amplification
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis thaliana
Arrays
Botany
centromere
Centromere - genetics
Centromere - metabolism
Centromeres
Computer applications
Concatamers
DNA Transposable Elements - genetics
Gene sequencing
Genome, Plant - genetics
Genomes
Genomics
Helitron
Helitrons
Homology
Intermediates
Oryza sativa
Plant growth
Predictions
Replication
rolling‐circle replication (RCR)
Software
tandem repeat
Tandem Repeat Sequences - genetics
Transposition
transposon
Transposons
Zea mays
title Rolling‐circle amplification of centromeric Helitrons in plant genomes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A13%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rolling%E2%80%90circle%20amplification%20of%20centromeric%20Helitrons%20in%20plant%20genomes&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Xiong,%20Wenwei&rft.date=2016-12&rft.volume=88&rft.issue=6&rft.spage=1038&rft.epage=1045&rft.pages=1038-1045&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/tpj.13314&rft_dat=%3Cproquest_cross%3E4289613901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1854099059&rft_id=info:pmid/27553634&rfr_iscdi=true