Mathematical Model of Bone Remodeling Captures the Antiresorptive and Anabolic Actions of Various Therapies
A better understanding of the molecular pathways regulating the bone remodeling process should help in the development of new antiresorptive regulators and anabolic regulators, that is, regulators of bone resorption and of bone formation. Understanding the mechanisms by which parathyroid hormone (PT...
Gespeichert in:
Veröffentlicht in: | Bulletin of mathematical biology 2017, Vol.79 (1), p.117-142 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 142 |
---|---|
container_issue | 1 |
container_start_page | 117 |
container_title | Bulletin of mathematical biology |
container_volume | 79 |
creator | Ross, David S. Mehta, Khamir Cabal, Antonio |
description | A better understanding of the molecular pathways regulating the bone remodeling process should help in the development of new antiresorptive regulators and anabolic regulators, that is, regulators of bone resorption and of bone formation. Understanding the mechanisms by which parathyroid hormone (PTH) influences bone formation and how it switches from anabolic to catabolic action is important for treating osteoporosis (Poole and Reeve in Curr Opin Pharmacol 5:612–617,
2005
). In this paper we describe a mathematical model of bone remodeling that incorporates, extends, and integrates several models of particular aspects of this biochemical system (Cabal et al. in J Bone Miner Res 28(8):1830–1836,
2013
; Lemaire et al. in J Theor Biol 229:293–309,
2004
; Peterson and Riggs in Bone 46:49–63,
2010
; Raposo et al. in J Clin Endocrinol Metab 87(9):4330–4340,
2002
; Ross et al. in J Disc Cont Dyn Sys Series B 17(6):2185–2200,
2012
). We plan to use this model as a bone homeostasis platform to develop anabolic and antiresorptive compounds. The model will allow us to test hypotheses about the dynamics of compounds and to test the potential benefits of combination therapies. At the core of the model is the idealized account of osteoclast and osteoblast signaling given by Lemaire et al. (J Theor Biol 229:293–309,
2004
). We have relaxed some of their assumptions about the roles of osteoprotegerin, transforming growth factor
β
, and receptor activator of nuclear factor
κ
B ligand; we have devised more detailed models of the interactions of these species. We have incorporated a model of the effect of calcium sensing receptor antagonists on remodeling (Cabal et al. in J Bone Miner Res 28(8):1830–1836,
2013
). We have also incorporated a basic model of the effects of vitamin D on calcium homeostasis. We have included a simple model of the mechanism proposed by Bellido et al. (
2003
), Ross et al. (J Disc Cont Dyn Sys Series B 17(6):2185–2200,
2012
), of the influence of PTH on osteoblast apoptosis, a mechanism that accounts for the anabolic response to pulsatile PTH administration. Finally, we have devised a simple model of the administration and effects of bisphosphonates. The biomarkers in the model are procollagen type 1 amino-terminal propeptide and C-terminal telopeptide. Bone mineral density is the model’s principal endpoint. |
doi_str_mv | 10.1007/s11538-016-0229-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1859499586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859499586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-d42511d655091539304460dd6844c9e3a5888c1ca0c5935c48cc662e7de73cd13</originalsourceid><addsrcrecordid>eNqNkV9rFTEQxYNY7G31A_giAV98WTv5u8nj9aJWaBGk-hrS7Nw2dXezJrtCv71ZbhURCj5NJvmdMxkOIS8ZvGUA7VlhTAnTANMNcG4b_oRsmOK8sRr4U7IBsLwxXMIxOSnlDqrGCvuMHPPWggLdbsj3Sz_f4uDnGHxPL1OHPU17-i6NSL_gsPZxvKE7P81LxkIrTLfjHOs55WmOP5H6satX_jr1MdBtmGMay-rxzeeYlkKvbjH7KWJ5To72vi_44qGekq8f3l_tzpuLzx8_7bYXTZCg5qaTXDHWaaXA1v2sACk1dJ02UgaLwitjTGDBQ1BWqCBNCFpzbDtsReiYOCVvDr5TTj8WLLMbYgnY937E-iHHjLLSWmX0f6BScSVaDRV9_Q96l5Y81kVWQwWiZYZXih2okFMpGfduynHw-d4xcGto7hCaq6G5NTS3al49OC_XA3Z_FL9TqgA_AKU-jTeY_xr9qOsvZXGgLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855037182</pqid></control><display><type>article</type><title>Mathematical Model of Bone Remodeling Captures the Antiresorptive and Anabolic Actions of Various Therapies</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ross, David S. ; Mehta, Khamir ; Cabal, Antonio</creator><creatorcontrib>Ross, David S. ; Mehta, Khamir ; Cabal, Antonio</creatorcontrib><description>A better understanding of the molecular pathways regulating the bone remodeling process should help in the development of new antiresorptive regulators and anabolic regulators, that is, regulators of bone resorption and of bone formation. Understanding the mechanisms by which parathyroid hormone (PTH) influences bone formation and how it switches from anabolic to catabolic action is important for treating osteoporosis (Poole and Reeve in Curr Opin Pharmacol 5:612–617,
2005
). In this paper we describe a mathematical model of bone remodeling that incorporates, extends, and integrates several models of particular aspects of this biochemical system (Cabal et al. in J Bone Miner Res 28(8):1830–1836,
2013
; Lemaire et al. in J Theor Biol 229:293–309,
2004
; Peterson and Riggs in Bone 46:49–63,
2010
; Raposo et al. in J Clin Endocrinol Metab 87(9):4330–4340,
2002
; Ross et al. in J Disc Cont Dyn Sys Series B 17(6):2185–2200,
2012
). We plan to use this model as a bone homeostasis platform to develop anabolic and antiresorptive compounds. The model will allow us to test hypotheses about the dynamics of compounds and to test the potential benefits of combination therapies. At the core of the model is the idealized account of osteoclast and osteoblast signaling given by Lemaire et al. (J Theor Biol 229:293–309,
2004
). We have relaxed some of their assumptions about the roles of osteoprotegerin, transforming growth factor
β
, and receptor activator of nuclear factor
κ
B ligand; we have devised more detailed models of the interactions of these species. We have incorporated a model of the effect of calcium sensing receptor antagonists on remodeling (Cabal et al. in J Bone Miner Res 28(8):1830–1836,
2013
). We have also incorporated a basic model of the effects of vitamin D on calcium homeostasis. We have included a simple model of the mechanism proposed by Bellido et al. (
2003
), Ross et al. (J Disc Cont Dyn Sys Series B 17(6):2185–2200,
2012
), of the influence of PTH on osteoblast apoptosis, a mechanism that accounts for the anabolic response to pulsatile PTH administration. Finally, we have devised a simple model of the administration and effects of bisphosphonates. The biomarkers in the model are procollagen type 1 amino-terminal propeptide and C-terminal telopeptide. Bone mineral density is the model’s principal endpoint.</description><identifier>ISSN: 0092-8240</identifier><identifier>EISSN: 1522-9602</identifier><identifier>DOI: 10.1007/s11538-016-0229-2</identifier><identifier>PMID: 27905067</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Anabolic Agents - therapeutic use ; Bone Density Conservation Agents - therapeutic use ; Bone Remodeling - drug effects ; Bone Remodeling - physiology ; Cell Biology ; Humans ; Life Sciences ; Mathematical and Computational Biology ; Mathematical Concepts ; Mathematics ; Mathematics and Statistics ; Models, Biological ; Original Article ; Osteoblasts - drug effects ; Osteoblasts - physiology ; Osteoclasts - drug effects ; Osteoclasts - physiology ; Osteoporosis - drug therapy ; Osteoporosis - physiopathology ; Osteoprotegerin - physiology ; Parathyroid Hormone - physiology ; Receptor Activator of Nuclear Factor-kappa B - physiology ; Signal Transduction</subject><ispartof>Bulletin of mathematical biology, 2017, Vol.79 (1), p.117-142</ispartof><rights>Society for Mathematical Biology 2016</rights><rights>Bulletin of Mathematical Biology is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-d42511d655091539304460dd6844c9e3a5888c1ca0c5935c48cc662e7de73cd13</citedby><cites>FETCH-LOGICAL-c405t-d42511d655091539304460dd6844c9e3a5888c1ca0c5935c48cc662e7de73cd13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11538-016-0229-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11538-016-0229-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27905067$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ross, David S.</creatorcontrib><creatorcontrib>Mehta, Khamir</creatorcontrib><creatorcontrib>Cabal, Antonio</creatorcontrib><title>Mathematical Model of Bone Remodeling Captures the Antiresorptive and Anabolic Actions of Various Therapies</title><title>Bulletin of mathematical biology</title><addtitle>Bull Math Biol</addtitle><addtitle>Bull Math Biol</addtitle><description>A better understanding of the molecular pathways regulating the bone remodeling process should help in the development of new antiresorptive regulators and anabolic regulators, that is, regulators of bone resorption and of bone formation. Understanding the mechanisms by which parathyroid hormone (PTH) influences bone formation and how it switches from anabolic to catabolic action is important for treating osteoporosis (Poole and Reeve in Curr Opin Pharmacol 5:612–617,
2005
). In this paper we describe a mathematical model of bone remodeling that incorporates, extends, and integrates several models of particular aspects of this biochemical system (Cabal et al. in J Bone Miner Res 28(8):1830–1836,
2013
; Lemaire et al. in J Theor Biol 229:293–309,
2004
; Peterson and Riggs in Bone 46:49–63,
2010
; Raposo et al. in J Clin Endocrinol Metab 87(9):4330–4340,
2002
; Ross et al. in J Disc Cont Dyn Sys Series B 17(6):2185–2200,
2012
). We plan to use this model as a bone homeostasis platform to develop anabolic and antiresorptive compounds. The model will allow us to test hypotheses about the dynamics of compounds and to test the potential benefits of combination therapies. At the core of the model is the idealized account of osteoclast and osteoblast signaling given by Lemaire et al. (J Theor Biol 229:293–309,
2004
). We have relaxed some of their assumptions about the roles of osteoprotegerin, transforming growth factor
β
, and receptor activator of nuclear factor
κ
B ligand; we have devised more detailed models of the interactions of these species. We have incorporated a model of the effect of calcium sensing receptor antagonists on remodeling (Cabal et al. in J Bone Miner Res 28(8):1830–1836,
2013
). We have also incorporated a basic model of the effects of vitamin D on calcium homeostasis. We have included a simple model of the mechanism proposed by Bellido et al. (
2003
), Ross et al. (J Disc Cont Dyn Sys Series B 17(6):2185–2200,
2012
), of the influence of PTH on osteoblast apoptosis, a mechanism that accounts for the anabolic response to pulsatile PTH administration. Finally, we have devised a simple model of the administration and effects of bisphosphonates. The biomarkers in the model are procollagen type 1 amino-terminal propeptide and C-terminal telopeptide. Bone mineral density is the model’s principal endpoint.</description><subject>Anabolic Agents - therapeutic use</subject><subject>Bone Density Conservation Agents - therapeutic use</subject><subject>Bone Remodeling - drug effects</subject><subject>Bone Remodeling - physiology</subject><subject>Cell Biology</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical Concepts</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Models, Biological</subject><subject>Original Article</subject><subject>Osteoblasts - drug effects</subject><subject>Osteoblasts - physiology</subject><subject>Osteoclasts - drug effects</subject><subject>Osteoclasts - physiology</subject><subject>Osteoporosis - drug therapy</subject><subject>Osteoporosis - physiopathology</subject><subject>Osteoprotegerin - physiology</subject><subject>Parathyroid Hormone - physiology</subject><subject>Receptor Activator of Nuclear Factor-kappa B - physiology</subject><subject>Signal Transduction</subject><issn>0092-8240</issn><issn>1522-9602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkV9rFTEQxYNY7G31A_giAV98WTv5u8nj9aJWaBGk-hrS7Nw2dXezJrtCv71ZbhURCj5NJvmdMxkOIS8ZvGUA7VlhTAnTANMNcG4b_oRsmOK8sRr4U7IBsLwxXMIxOSnlDqrGCvuMHPPWggLdbsj3Sz_f4uDnGHxPL1OHPU17-i6NSL_gsPZxvKE7P81LxkIrTLfjHOs55WmOP5H6satX_jr1MdBtmGMay-rxzeeYlkKvbjH7KWJ5To72vi_44qGekq8f3l_tzpuLzx8_7bYXTZCg5qaTXDHWaaXA1v2sACk1dJ02UgaLwitjTGDBQ1BWqCBNCFpzbDtsReiYOCVvDr5TTj8WLLMbYgnY937E-iHHjLLSWmX0f6BScSVaDRV9_Q96l5Y81kVWQwWiZYZXih2okFMpGfduynHw-d4xcGto7hCaq6G5NTS3al49OC_XA3Z_FL9TqgA_AKU-jTeY_xr9qOsvZXGgLg</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Ross, David S.</creator><creator>Mehta, Khamir</creator><creator>Cabal, Antonio</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>7SN</scope><scope>C1K</scope></search><sort><creationdate>2017</creationdate><title>Mathematical Model of Bone Remodeling Captures the Antiresorptive and Anabolic Actions of Various Therapies</title><author>Ross, David S. ; Mehta, Khamir ; Cabal, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-d42511d655091539304460dd6844c9e3a5888c1ca0c5935c48cc662e7de73cd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anabolic Agents - therapeutic use</topic><topic>Bone Density Conservation Agents - therapeutic use</topic><topic>Bone Remodeling - drug effects</topic><topic>Bone Remodeling - physiology</topic><topic>Cell Biology</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical Concepts</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Models, Biological</topic><topic>Original Article</topic><topic>Osteoblasts - drug effects</topic><topic>Osteoblasts - physiology</topic><topic>Osteoclasts - drug effects</topic><topic>Osteoclasts - physiology</topic><topic>Osteoporosis - drug therapy</topic><topic>Osteoporosis - physiopathology</topic><topic>Osteoprotegerin - physiology</topic><topic>Parathyroid Hormone - physiology</topic><topic>Receptor Activator of Nuclear Factor-kappa B - physiology</topic><topic>Signal Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ross, David S.</creatorcontrib><creatorcontrib>Mehta, Khamir</creatorcontrib><creatorcontrib>Cabal, Antonio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Bulletin of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ross, David S.</au><au>Mehta, Khamir</au><au>Cabal, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical Model of Bone Remodeling Captures the Antiresorptive and Anabolic Actions of Various Therapies</atitle><jtitle>Bulletin of mathematical biology</jtitle><stitle>Bull Math Biol</stitle><addtitle>Bull Math Biol</addtitle><date>2017</date><risdate>2017</risdate><volume>79</volume><issue>1</issue><spage>117</spage><epage>142</epage><pages>117-142</pages><issn>0092-8240</issn><eissn>1522-9602</eissn><abstract>A better understanding of the molecular pathways regulating the bone remodeling process should help in the development of new antiresorptive regulators and anabolic regulators, that is, regulators of bone resorption and of bone formation. Understanding the mechanisms by which parathyroid hormone (PTH) influences bone formation and how it switches from anabolic to catabolic action is important for treating osteoporosis (Poole and Reeve in Curr Opin Pharmacol 5:612–617,
2005
). In this paper we describe a mathematical model of bone remodeling that incorporates, extends, and integrates several models of particular aspects of this biochemical system (Cabal et al. in J Bone Miner Res 28(8):1830–1836,
2013
; Lemaire et al. in J Theor Biol 229:293–309,
2004
; Peterson and Riggs in Bone 46:49–63,
2010
; Raposo et al. in J Clin Endocrinol Metab 87(9):4330–4340,
2002
; Ross et al. in J Disc Cont Dyn Sys Series B 17(6):2185–2200,
2012
). We plan to use this model as a bone homeostasis platform to develop anabolic and antiresorptive compounds. The model will allow us to test hypotheses about the dynamics of compounds and to test the potential benefits of combination therapies. At the core of the model is the idealized account of osteoclast and osteoblast signaling given by Lemaire et al. (J Theor Biol 229:293–309,
2004
). We have relaxed some of their assumptions about the roles of osteoprotegerin, transforming growth factor
β
, and receptor activator of nuclear factor
κ
B ligand; we have devised more detailed models of the interactions of these species. We have incorporated a model of the effect of calcium sensing receptor antagonists on remodeling (Cabal et al. in J Bone Miner Res 28(8):1830–1836,
2013
). We have also incorporated a basic model of the effects of vitamin D on calcium homeostasis. We have included a simple model of the mechanism proposed by Bellido et al. (
2003
), Ross et al. (J Disc Cont Dyn Sys Series B 17(6):2185–2200,
2012
), of the influence of PTH on osteoblast apoptosis, a mechanism that accounts for the anabolic response to pulsatile PTH administration. Finally, we have devised a simple model of the administration and effects of bisphosphonates. The biomarkers in the model are procollagen type 1 amino-terminal propeptide and C-terminal telopeptide. Bone mineral density is the model’s principal endpoint.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>27905067</pmid><doi>10.1007/s11538-016-0229-2</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8240 |
ispartof | Bulletin of mathematical biology, 2017, Vol.79 (1), p.117-142 |
issn | 0092-8240 1522-9602 |
language | eng |
recordid | cdi_proquest_miscellaneous_1859499586 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Anabolic Agents - therapeutic use Bone Density Conservation Agents - therapeutic use Bone Remodeling - drug effects Bone Remodeling - physiology Cell Biology Humans Life Sciences Mathematical and Computational Biology Mathematical Concepts Mathematics Mathematics and Statistics Models, Biological Original Article Osteoblasts - drug effects Osteoblasts - physiology Osteoclasts - drug effects Osteoclasts - physiology Osteoporosis - drug therapy Osteoporosis - physiopathology Osteoprotegerin - physiology Parathyroid Hormone - physiology Receptor Activator of Nuclear Factor-kappa B - physiology Signal Transduction |
title | Mathematical Model of Bone Remodeling Captures the Antiresorptive and Anabolic Actions of Various Therapies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A21%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20Model%20of%20Bone%20Remodeling%20Captures%20the%20Antiresorptive%20and%20Anabolic%20Actions%20of%20Various%20Therapies&rft.jtitle=Bulletin%20of%20mathematical%20biology&rft.au=Ross,%20David%20S.&rft.date=2017&rft.volume=79&rft.issue=1&rft.spage=117&rft.epage=142&rft.pages=117-142&rft.issn=0092-8240&rft.eissn=1522-9602&rft_id=info:doi/10.1007/s11538-016-0229-2&rft_dat=%3Cproquest_cross%3E1859499586%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855037182&rft_id=info:pmid/27905067&rfr_iscdi=true |