Contribution of Starlette, Stella, and AJISAI to the SLR-derived global reference frame
The contribution of Starlette, Stella, and AJISAI is currently neglected when defining the International Terrestrial Reference Frame, despite a long time series of precise SLR observations and a huge amount of available data. The inferior accuracy of the orbits of low orbiting geodetic satellites is...
Gespeichert in:
Veröffentlicht in: | Journal of geodesy 2014-08, Vol.88 (8), p.789-804 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 804 |
---|---|
container_issue | 8 |
container_start_page | 789 |
container_title | Journal of geodesy |
container_volume | 88 |
creator | Sośnica, Krzysztof Jäggi, Adrian Thaller, Daniela Beutler, Gerhard Dach, Rolf |
description | The contribution of Starlette, Stella, and AJISAI is currently neglected when defining the International Terrestrial Reference Frame, despite a long time series of precise SLR observations and a huge amount of available data. The inferior accuracy of the orbits of low orbiting geodetic satellites is the main reason for this neglect. The Analysis Centers of the International Laser Ranging Service (ILRS ACs) do, however, consider including low orbiting geodetic satellites for deriving the standard ILRS products based on LAGEOS and Etalon satellites, instead of the sparsely observed, and thus, virtually negligible Etalons. We process ten years of SLR observations to Starlette, Stella, AJISAI, and LAGEOS and we assess the impact of these Low Earth Orbiting (LEO) SLR satellites on the SLR-derived parameters. We study different orbit parameterizations, in particular different arc lengths and the impact of pseudo-stochastic pulses and dynamical orbit parameters on the quality of the solutions. We found that the repeatability of the East and North components of station coordinates, the quality of polar coordinates, and the scale estimates of the reference are improved when combining LAGEOS with low orbiting SLR satellites. In the multi-SLR solutions, the scale and the
Z
component of geocenter coordinates are less affected by deficiencies in solar radiation pressure modeling than in the LAGEOS-1/2 solutions, due to substantially reduced correlations between the
Z
geocenter coordinate and empirical orbit parameters. Eventually, we found that the standard values of Center-of-mass corrections (CoM) for geodetic LEO satellites are not valid for the currently operating SLR systems. The variations of station-dependent differential range biases reach 52 and 25 mm for AJISAI and Starlette/Stella, respectively, which is why estimating station-dependent range biases or using station-dependent CoM, instead of one value for all SLR stations, is strongly recommended. This clearly indicates that the ILRS effort to produce CoM corrections for each satellite, which are site-specific and depend on the system characteristics at the time of tracking, is very important and needs to be implemented in the SLR data analysis. |
doi_str_mv | 10.1007/s00190-014-0722-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1859498817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4312327861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-a0e3ac464d2a219498d527cba7ad90317b2373ae3927c02b8819778d0552cad03</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3AjQujecw0mWUpPioFwSouQ2Zyp06ZTmqSEeyvN0NdiODqXi7fOZx7EDpn9JpRKm8CpayghLKMUMk52R2gEcsEJ0wU2SEa0SIriJQsO0YnIawTLXM1GaG3meuib8o-Nq7DrsbLaHwLMcJVWqFtzRU2ncXTx_lyOsfR4fgOeLl4JhZ88wkWr1pXmhZ7qMFDVwGuvdnAKTqqTRvg7GeO0evd7cvsgSye7uez6YJUWcEiMRSEqbJJZrnhLGVUNueyKo00tqCCyZILKQyIIl0pL5VihZTK0jznlbFUjNHl3nfr3UcPIepNE6ohdweuD5qpfHBVTCb04g-6dr3vUrpETXKeU6VUotieqrwLIX2lt77ZGP-lGdVD1XpftU5V66FqvUsavteExHYr8L-c_xV9A3frfyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1865250888</pqid></control><display><type>article</type><title>Contribution of Starlette, Stella, and AJISAI to the SLR-derived global reference frame</title><source>SpringerNature Journals</source><creator>Sośnica, Krzysztof ; Jäggi, Adrian ; Thaller, Daniela ; Beutler, Gerhard ; Dach, Rolf</creator><creatorcontrib>Sośnica, Krzysztof ; Jäggi, Adrian ; Thaller, Daniela ; Beutler, Gerhard ; Dach, Rolf</creatorcontrib><description>The contribution of Starlette, Stella, and AJISAI is currently neglected when defining the International Terrestrial Reference Frame, despite a long time series of precise SLR observations and a huge amount of available data. The inferior accuracy of the orbits of low orbiting geodetic satellites is the main reason for this neglect. The Analysis Centers of the International Laser Ranging Service (ILRS ACs) do, however, consider including low orbiting geodetic satellites for deriving the standard ILRS products based on LAGEOS and Etalon satellites, instead of the sparsely observed, and thus, virtually negligible Etalons. We process ten years of SLR observations to Starlette, Stella, AJISAI, and LAGEOS and we assess the impact of these Low Earth Orbiting (LEO) SLR satellites on the SLR-derived parameters. We study different orbit parameterizations, in particular different arc lengths and the impact of pseudo-stochastic pulses and dynamical orbit parameters on the quality of the solutions. We found that the repeatability of the East and North components of station coordinates, the quality of polar coordinates, and the scale estimates of the reference are improved when combining LAGEOS with low orbiting SLR satellites. In the multi-SLR solutions, the scale and the
Z
component of geocenter coordinates are less affected by deficiencies in solar radiation pressure modeling than in the LAGEOS-1/2 solutions, due to substantially reduced correlations between the
Z
geocenter coordinate and empirical orbit parameters. Eventually, we found that the standard values of Center-of-mass corrections (CoM) for geodetic LEO satellites are not valid for the currently operating SLR systems. The variations of station-dependent differential range biases reach 52 and 25 mm for AJISAI and Starlette/Stella, respectively, which is why estimating station-dependent range biases or using station-dependent CoM, instead of one value for all SLR stations, is strongly recommended. This clearly indicates that the ILRS effort to produce CoM corrections for each satellite, which are site-specific and depend on the system characteristics at the time of tracking, is very important and needs to be implemented in the SLR data analysis.</description><identifier>ISSN: 0949-7714</identifier><identifier>EISSN: 1432-1394</identifier><identifier>DOI: 10.1007/s00190-014-0722-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Earth and Environmental Science ; Earth orbits ; Earth Sciences ; Geodetics ; Geophysics/Geodesy ; Low earth orbit satellites ; Orbits ; Original Article ; Satellites ; Solar radiation</subject><ispartof>Journal of geodesy, 2014-08, Vol.88 (8), p.789-804</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>Journal of Geodesy is a copyright of Springer, 2014.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-a0e3ac464d2a219498d527cba7ad90317b2373ae3927c02b8819778d0552cad03</citedby><cites>FETCH-LOGICAL-c491t-a0e3ac464d2a219498d527cba7ad90317b2373ae3927c02b8819778d0552cad03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00190-014-0722-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00190-014-0722-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Sośnica, Krzysztof</creatorcontrib><creatorcontrib>Jäggi, Adrian</creatorcontrib><creatorcontrib>Thaller, Daniela</creatorcontrib><creatorcontrib>Beutler, Gerhard</creatorcontrib><creatorcontrib>Dach, Rolf</creatorcontrib><title>Contribution of Starlette, Stella, and AJISAI to the SLR-derived global reference frame</title><title>Journal of geodesy</title><addtitle>J Geod</addtitle><description>The contribution of Starlette, Stella, and AJISAI is currently neglected when defining the International Terrestrial Reference Frame, despite a long time series of precise SLR observations and a huge amount of available data. The inferior accuracy of the orbits of low orbiting geodetic satellites is the main reason for this neglect. The Analysis Centers of the International Laser Ranging Service (ILRS ACs) do, however, consider including low orbiting geodetic satellites for deriving the standard ILRS products based on LAGEOS and Etalon satellites, instead of the sparsely observed, and thus, virtually negligible Etalons. We process ten years of SLR observations to Starlette, Stella, AJISAI, and LAGEOS and we assess the impact of these Low Earth Orbiting (LEO) SLR satellites on the SLR-derived parameters. We study different orbit parameterizations, in particular different arc lengths and the impact of pseudo-stochastic pulses and dynamical orbit parameters on the quality of the solutions. We found that the repeatability of the East and North components of station coordinates, the quality of polar coordinates, and the scale estimates of the reference are improved when combining LAGEOS with low orbiting SLR satellites. In the multi-SLR solutions, the scale and the
Z
component of geocenter coordinates are less affected by deficiencies in solar radiation pressure modeling than in the LAGEOS-1/2 solutions, due to substantially reduced correlations between the
Z
geocenter coordinate and empirical orbit parameters. Eventually, we found that the standard values of Center-of-mass corrections (CoM) for geodetic LEO satellites are not valid for the currently operating SLR systems. The variations of station-dependent differential range biases reach 52 and 25 mm for AJISAI and Starlette/Stella, respectively, which is why estimating station-dependent range biases or using station-dependent CoM, instead of one value for all SLR stations, is strongly recommended. This clearly indicates that the ILRS effort to produce CoM corrections for each satellite, which are site-specific and depend on the system characteristics at the time of tracking, is very important and needs to be implemented in the SLR data analysis.</description><subject>Earth and Environmental Science</subject><subject>Earth orbits</subject><subject>Earth Sciences</subject><subject>Geodetics</subject><subject>Geophysics/Geodesy</subject><subject>Low earth orbit satellites</subject><subject>Orbits</subject><subject>Original Article</subject><subject>Satellites</subject><subject>Solar radiation</subject><issn>0949-7714</issn><issn>1432-1394</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wF3AjQujecw0mWUpPioFwSouQ2Zyp06ZTmqSEeyvN0NdiODqXi7fOZx7EDpn9JpRKm8CpayghLKMUMk52R2gEcsEJ0wU2SEa0SIriJQsO0YnIawTLXM1GaG3meuib8o-Nq7DrsbLaHwLMcJVWqFtzRU2ncXTx_lyOsfR4fgOeLl4JhZ88wkWr1pXmhZ7qMFDVwGuvdnAKTqqTRvg7GeO0evd7cvsgSye7uez6YJUWcEiMRSEqbJJZrnhLGVUNueyKo00tqCCyZILKQyIIl0pL5VihZTK0jznlbFUjNHl3nfr3UcPIepNE6ohdweuD5qpfHBVTCb04g-6dr3vUrpETXKeU6VUotieqrwLIX2lt77ZGP-lGdVD1XpftU5V66FqvUsavteExHYr8L-c_xV9A3frfyw</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Sośnica, Krzysztof</creator><creator>Jäggi, Adrian</creator><creator>Thaller, Daniela</creator><creator>Beutler, Gerhard</creator><creator>Dach, Rolf</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20140801</creationdate><title>Contribution of Starlette, Stella, and AJISAI to the SLR-derived global reference frame</title><author>Sośnica, Krzysztof ; Jäggi, Adrian ; Thaller, Daniela ; Beutler, Gerhard ; Dach, Rolf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-a0e3ac464d2a219498d527cba7ad90317b2373ae3927c02b8819778d0552cad03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Earth and Environmental Science</topic><topic>Earth orbits</topic><topic>Earth Sciences</topic><topic>Geodetics</topic><topic>Geophysics/Geodesy</topic><topic>Low earth orbit satellites</topic><topic>Orbits</topic><topic>Original Article</topic><topic>Satellites</topic><topic>Solar radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sośnica, Krzysztof</creatorcontrib><creatorcontrib>Jäggi, Adrian</creatorcontrib><creatorcontrib>Thaller, Daniela</creatorcontrib><creatorcontrib>Beutler, Gerhard</creatorcontrib><creatorcontrib>Dach, Rolf</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of geodesy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sośnica, Krzysztof</au><au>Jäggi, Adrian</au><au>Thaller, Daniela</au><au>Beutler, Gerhard</au><au>Dach, Rolf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contribution of Starlette, Stella, and AJISAI to the SLR-derived global reference frame</atitle><jtitle>Journal of geodesy</jtitle><stitle>J Geod</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>88</volume><issue>8</issue><spage>789</spage><epage>804</epage><pages>789-804</pages><issn>0949-7714</issn><eissn>1432-1394</eissn><abstract>The contribution of Starlette, Stella, and AJISAI is currently neglected when defining the International Terrestrial Reference Frame, despite a long time series of precise SLR observations and a huge amount of available data. The inferior accuracy of the orbits of low orbiting geodetic satellites is the main reason for this neglect. The Analysis Centers of the International Laser Ranging Service (ILRS ACs) do, however, consider including low orbiting geodetic satellites for deriving the standard ILRS products based on LAGEOS and Etalon satellites, instead of the sparsely observed, and thus, virtually negligible Etalons. We process ten years of SLR observations to Starlette, Stella, AJISAI, and LAGEOS and we assess the impact of these Low Earth Orbiting (LEO) SLR satellites on the SLR-derived parameters. We study different orbit parameterizations, in particular different arc lengths and the impact of pseudo-stochastic pulses and dynamical orbit parameters on the quality of the solutions. We found that the repeatability of the East and North components of station coordinates, the quality of polar coordinates, and the scale estimates of the reference are improved when combining LAGEOS with low orbiting SLR satellites. In the multi-SLR solutions, the scale and the
Z
component of geocenter coordinates are less affected by deficiencies in solar radiation pressure modeling than in the LAGEOS-1/2 solutions, due to substantially reduced correlations between the
Z
geocenter coordinate and empirical orbit parameters. Eventually, we found that the standard values of Center-of-mass corrections (CoM) for geodetic LEO satellites are not valid for the currently operating SLR systems. The variations of station-dependent differential range biases reach 52 and 25 mm for AJISAI and Starlette/Stella, respectively, which is why estimating station-dependent range biases or using station-dependent CoM, instead of one value for all SLR stations, is strongly recommended. This clearly indicates that the ILRS effort to produce CoM corrections for each satellite, which are site-specific and depend on the system characteristics at the time of tracking, is very important and needs to be implemented in the SLR data analysis.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00190-014-0722-z</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0949-7714 |
ispartof | Journal of geodesy, 2014-08, Vol.88 (8), p.789-804 |
issn | 0949-7714 1432-1394 |
language | eng |
recordid | cdi_proquest_miscellaneous_1859498817 |
source | SpringerNature Journals |
subjects | Earth and Environmental Science Earth orbits Earth Sciences Geodetics Geophysics/Geodesy Low earth orbit satellites Orbits Original Article Satellites Solar radiation |
title | Contribution of Starlette, Stella, and AJISAI to the SLR-derived global reference frame |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T05%3A45%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contribution%20of%20Starlette,%20Stella,%20and%20AJISAI%20to%20the%20SLR-derived%20global%20reference%20frame&rft.jtitle=Journal%20of%20geodesy&rft.au=So%C5%9Bnica,%20Krzysztof&rft.date=2014-08-01&rft.volume=88&rft.issue=8&rft.spage=789&rft.epage=804&rft.pages=789-804&rft.issn=0949-7714&rft.eissn=1432-1394&rft_id=info:doi/10.1007/s00190-014-0722-z&rft_dat=%3Cproquest_cross%3E4312327861%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1865250888&rft_id=info:pmid/&rfr_iscdi=true |