Joint Maximum Likelihood Estimation for Diagnostic Classification Models

Joint maximum likelihood estimation (JMLE) is developed for diagnostic classification models (DCMs). JMLE has been barely used in Psychometrics because JMLE parameter estimators typically lack statistical consistency. The JMLE procedure presented here resolves the consistency issue by incorporating...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychometrika 2016-12, Vol.81 (4), p.1069-1092
Hauptverfasser: Chiu, Chia-Yi, Köhn, Hans-Friedrich, Zheng, Yi, Henson, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1092
container_issue 4
container_start_page 1069
container_title Psychometrika
container_volume 81
creator Chiu, Chia-Yi
Köhn, Hans-Friedrich
Zheng, Yi
Henson, Robert
description Joint maximum likelihood estimation (JMLE) is developed for diagnostic classification models (DCMs). JMLE has been barely used in Psychometrics because JMLE parameter estimators typically lack statistical consistency. The JMLE procedure presented here resolves the consistency issue by incorporating an external, statistically consistent estimator of examinees’ proficiency class membership into the joint likelihood function, which subsequently allows for the construction of item parameter estimators that also have the consistency property. Consistency of the JMLE parameter estimators is established within the framework of general DCMs: The JMLE parameter estimators are derived for the Loglinear Cognitive Diagnosis Model (LCDM). Two consistency theorems are proven for the LCDM. Using the framework of general DCMs makes the results and proofs also applicable to DCMs that can be expressed as submodels of the LCDM. Simulation studies are reported for evaluating the performance of JMLE when used with tests of varying length and different numbers of attributes. As a practical application, JMLE is also used with “real world” educational data collected with a language proficiency test.
doi_str_mv 10.1007/s11336-016-9534-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1859492920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4280471891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-e23ed5e87c24528a184c8abeb0f22b520dfb9bf1090aeb06a0560fd64cc0e9993</originalsourceid><addsrcrecordid>eNqNkctKxDAUhoMoOl4ewI0U3LipnlwnWco43hhxo-uQpukYbRttWtC3N0NHEUFwFTjnO3-S8yF0iOEUA0zPIsaUihywyBWnLFcbaIKlgByUhE00AaA0p5jQHbQb4zMAKCzlNtoh0yllRMkJur4Nvu2zO_Pum6HJFv7F1f4phDKbx943pvehzarQZRfeLNuQajab1SZGX3k7du9C6eq4j7YqU0d3sD730OPl_GF2nS_ur25m54vcMuB97gh1JXdyagnjRBosmZWmcAVUhBScQFkVqqgwKDCpKAxwAVUpmLXglFJ0D52Mua9deBtc7HXjo3V1bVoXhqix5Iopogj8A6WcYcw5T-jxL_Q5DF2bPpIopgSjgohE4ZGyXYixc5V-7dKOug-NQa-M6NGITkb0yohevfdonTwUjSu_J74UJICMQEytdum6H1f_mfoJ6VyVLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1849643626</pqid></control><display><type>article</type><title>Joint Maximum Likelihood Estimation for Diagnostic Classification Models</title><source>MEDLINE</source><source>EBSCOhost Education Source</source><source>Springer Online Journals - JUSTICE</source><creator>Chiu, Chia-Yi ; Köhn, Hans-Friedrich ; Zheng, Yi ; Henson, Robert</creator><creatorcontrib>Chiu, Chia-Yi ; Köhn, Hans-Friedrich ; Zheng, Yi ; Henson, Robert</creatorcontrib><description>Joint maximum likelihood estimation (JMLE) is developed for diagnostic classification models (DCMs). JMLE has been barely used in Psychometrics because JMLE parameter estimators typically lack statistical consistency. The JMLE procedure presented here resolves the consistency issue by incorporating an external, statistically consistent estimator of examinees’ proficiency class membership into the joint likelihood function, which subsequently allows for the construction of item parameter estimators that also have the consistency property. Consistency of the JMLE parameter estimators is established within the framework of general DCMs: The JMLE parameter estimators are derived for the Loglinear Cognitive Diagnosis Model (LCDM). Two consistency theorems are proven for the LCDM. Using the framework of general DCMs makes the results and proofs also applicable to DCMs that can be expressed as submodels of the LCDM. Simulation studies are reported for evaluating the performance of JMLE when used with tests of varying length and different numbers of attributes. As a practical application, JMLE is also used with “real world” educational data collected with a language proficiency test.</description><identifier>ISSN: 0033-3123</identifier><identifier>EISSN: 1860-0980</identifier><identifier>DOI: 10.1007/s11336-016-9534-9</identifier><identifier>PMID: 27734298</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Ability Identification ; Algorithms ; Assessment ; Behavioral Science and Psychology ; Clinical Decision-Making ; Computer Simulation ; Data Interpretation, Statistical ; Datasets as Topic ; Educational evaluation ; Educational Testing ; Humanities ; Humans ; Language Tests ; Law ; Likelihood Functions ; Linear Models ; Markov Processes ; Maximum Likelihood Statistics ; Psychology ; Psychometrics ; Psychometrics - methods ; Statistical Theory and Methods ; Statistics for Social Sciences ; Statistics, Nonparametric ; Testing and Evaluation</subject><ispartof>Psychometrika, 2016-12, Vol.81 (4), p.1069-1092</ispartof><rights>The Psychometric Society 2016</rights><rights>Psychometrika is a copyright of Springer, 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-e23ed5e87c24528a184c8abeb0f22b520dfb9bf1090aeb06a0560fd64cc0e9993</citedby><cites>FETCH-LOGICAL-c405t-e23ed5e87c24528a184c8abeb0f22b520dfb9bf1090aeb06a0560fd64cc0e9993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11336-016-9534-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11336-016-9534-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27734298$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chiu, Chia-Yi</creatorcontrib><creatorcontrib>Köhn, Hans-Friedrich</creatorcontrib><creatorcontrib>Zheng, Yi</creatorcontrib><creatorcontrib>Henson, Robert</creatorcontrib><title>Joint Maximum Likelihood Estimation for Diagnostic Classification Models</title><title>Psychometrika</title><addtitle>Psychometrika</addtitle><addtitle>Psychometrika</addtitle><description>Joint maximum likelihood estimation (JMLE) is developed for diagnostic classification models (DCMs). JMLE has been barely used in Psychometrics because JMLE parameter estimators typically lack statistical consistency. The JMLE procedure presented here resolves the consistency issue by incorporating an external, statistically consistent estimator of examinees’ proficiency class membership into the joint likelihood function, which subsequently allows for the construction of item parameter estimators that also have the consistency property. Consistency of the JMLE parameter estimators is established within the framework of general DCMs: The JMLE parameter estimators are derived for the Loglinear Cognitive Diagnosis Model (LCDM). Two consistency theorems are proven for the LCDM. Using the framework of general DCMs makes the results and proofs also applicable to DCMs that can be expressed as submodels of the LCDM. Simulation studies are reported for evaluating the performance of JMLE when used with tests of varying length and different numbers of attributes. As a practical application, JMLE is also used with “real world” educational data collected with a language proficiency test.</description><subject>Ability Identification</subject><subject>Algorithms</subject><subject>Assessment</subject><subject>Behavioral Science and Psychology</subject><subject>Clinical Decision-Making</subject><subject>Computer Simulation</subject><subject>Data Interpretation, Statistical</subject><subject>Datasets as Topic</subject><subject>Educational evaluation</subject><subject>Educational Testing</subject><subject>Humanities</subject><subject>Humans</subject><subject>Language Tests</subject><subject>Law</subject><subject>Likelihood Functions</subject><subject>Linear Models</subject><subject>Markov Processes</subject><subject>Maximum Likelihood Statistics</subject><subject>Psychology</subject><subject>Psychometrics</subject><subject>Psychometrics - methods</subject><subject>Statistical Theory and Methods</subject><subject>Statistics for Social Sciences</subject><subject>Statistics, Nonparametric</subject><subject>Testing and Evaluation</subject><issn>0033-3123</issn><issn>1860-0980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkctKxDAUhoMoOl4ewI0U3LipnlwnWco43hhxo-uQpukYbRttWtC3N0NHEUFwFTjnO3-S8yF0iOEUA0zPIsaUihywyBWnLFcbaIKlgByUhE00AaA0p5jQHbQb4zMAKCzlNtoh0yllRMkJur4Nvu2zO_Pum6HJFv7F1f4phDKbx943pvehzarQZRfeLNuQajab1SZGX3k7du9C6eq4j7YqU0d3sD730OPl_GF2nS_ur25m54vcMuB97gh1JXdyagnjRBosmZWmcAVUhBScQFkVqqgwKDCpKAxwAVUpmLXglFJ0D52Mua9deBtc7HXjo3V1bVoXhqix5Iopogj8A6WcYcw5T-jxL_Q5DF2bPpIopgSjgohE4ZGyXYixc5V-7dKOug-NQa-M6NGITkb0yohevfdonTwUjSu_J74UJICMQEytdum6H1f_mfoJ6VyVLw</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Chiu, Chia-Yi</creator><creator>Köhn, Hans-Friedrich</creator><creator>Zheng, Yi</creator><creator>Henson, Robert</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7TK</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88B</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0P</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20161201</creationdate><title>Joint Maximum Likelihood Estimation for Diagnostic Classification Models</title><author>Chiu, Chia-Yi ; Köhn, Hans-Friedrich ; Zheng, Yi ; Henson, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-e23ed5e87c24528a184c8abeb0f22b520dfb9bf1090aeb06a0560fd64cc0e9993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Ability Identification</topic><topic>Algorithms</topic><topic>Assessment</topic><topic>Behavioral Science and Psychology</topic><topic>Clinical Decision-Making</topic><topic>Computer Simulation</topic><topic>Data Interpretation, Statistical</topic><topic>Datasets as Topic</topic><topic>Educational evaluation</topic><topic>Educational Testing</topic><topic>Humanities</topic><topic>Humans</topic><topic>Language Tests</topic><topic>Law</topic><topic>Likelihood Functions</topic><topic>Linear Models</topic><topic>Markov Processes</topic><topic>Maximum Likelihood Statistics</topic><topic>Psychology</topic><topic>Psychometrics</topic><topic>Psychometrics - methods</topic><topic>Statistical Theory and Methods</topic><topic>Statistics for Social Sciences</topic><topic>Statistics, Nonparametric</topic><topic>Testing and Evaluation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiu, Chia-Yi</creatorcontrib><creatorcontrib>Köhn, Hans-Friedrich</creatorcontrib><creatorcontrib>Zheng, Yi</creatorcontrib><creatorcontrib>Henson, Robert</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection【Remote access available】</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Education Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>ProQuest Education Journals</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Psychometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiu, Chia-Yi</au><au>Köhn, Hans-Friedrich</au><au>Zheng, Yi</au><au>Henson, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Maximum Likelihood Estimation for Diagnostic Classification Models</atitle><jtitle>Psychometrika</jtitle><stitle>Psychometrika</stitle><addtitle>Psychometrika</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>81</volume><issue>4</issue><spage>1069</spage><epage>1092</epage><pages>1069-1092</pages><issn>0033-3123</issn><eissn>1860-0980</eissn><abstract>Joint maximum likelihood estimation (JMLE) is developed for diagnostic classification models (DCMs). JMLE has been barely used in Psychometrics because JMLE parameter estimators typically lack statistical consistency. The JMLE procedure presented here resolves the consistency issue by incorporating an external, statistically consistent estimator of examinees’ proficiency class membership into the joint likelihood function, which subsequently allows for the construction of item parameter estimators that also have the consistency property. Consistency of the JMLE parameter estimators is established within the framework of general DCMs: The JMLE parameter estimators are derived for the Loglinear Cognitive Diagnosis Model (LCDM). Two consistency theorems are proven for the LCDM. Using the framework of general DCMs makes the results and proofs also applicable to DCMs that can be expressed as submodels of the LCDM. Simulation studies are reported for evaluating the performance of JMLE when used with tests of varying length and different numbers of attributes. As a practical application, JMLE is also used with “real world” educational data collected with a language proficiency test.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>27734298</pmid><doi>10.1007/s11336-016-9534-9</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0033-3123
ispartof Psychometrika, 2016-12, Vol.81 (4), p.1069-1092
issn 0033-3123
1860-0980
language eng
recordid cdi_proquest_miscellaneous_1859492920
source MEDLINE; EBSCOhost Education Source; Springer Online Journals - JUSTICE
subjects Ability Identification
Algorithms
Assessment
Behavioral Science and Psychology
Clinical Decision-Making
Computer Simulation
Data Interpretation, Statistical
Datasets as Topic
Educational evaluation
Educational Testing
Humanities
Humans
Language Tests
Law
Likelihood Functions
Linear Models
Markov Processes
Maximum Likelihood Statistics
Psychology
Psychometrics
Psychometrics - methods
Statistical Theory and Methods
Statistics for Social Sciences
Statistics, Nonparametric
Testing and Evaluation
title Joint Maximum Likelihood Estimation for Diagnostic Classification Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A43%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Maximum%20Likelihood%20Estimation%20for%20Diagnostic%20Classification%20Models&rft.jtitle=Psychometrika&rft.au=Chiu,%20Chia-Yi&rft.date=2016-12-01&rft.volume=81&rft.issue=4&rft.spage=1069&rft.epage=1092&rft.pages=1069-1092&rft.issn=0033-3123&rft.eissn=1860-0980&rft_id=info:doi/10.1007/s11336-016-9534-9&rft_dat=%3Cproquest_cross%3E4280471891%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1849643626&rft_id=info:pmid/27734298&rfr_iscdi=true