Leveraging constraints and biotelemetry data to pinpoint repetitively used spatial features
Satellite telemetry devices collect valuable information concerning the sites visited by animals, including the location of central places like dens, nests, rookeries, or haul-outs. Existing methods for estimating the location of central places from telemetry data require user-specified thresholds a...
Gespeichert in:
Veröffentlicht in: | Ecology (Durham) 2017-01, Vol.98 (1), p.12-20 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20 |
---|---|
container_issue | 1 |
container_start_page | 12 |
container_title | Ecology (Durham) |
container_volume | 98 |
creator | Brost, Brian M. Hooten, Mevin B. Small, Robert J. |
description | Satellite telemetry devices collect valuable information concerning the sites visited by animals, including the location of central places like dens, nests, rookeries, or haul-outs. Existing methods for estimating the location of central places from telemetry data require user-specified thresholds and ignore common nuances like measurement error. We present a fully model-based approach for locating central places from telemetry data that accounts for multiple sources of uncertainty and uses all of the available locational data. Our general framework consists of an observation model to account for large telemetry measurement error and animal movement, and a highly flexible mixture model specified using a Dirichlet process to identify the location of central places. We also quantify temporal patterns in central place use by incorporating ancillary behavioral data into the model; however, our framework is also suitable when no such behavioral data exist. We apply the model to a simulated data set as proof of concept. We then illustrate our framework by analyzing an Argos satellite telemetry data set on harbor seals (Phoca vitulina) in the Gulf of Alaska, a species that exhibits fidelity to terrestrial haul-out sites. |
doi_str_mv | 10.1002/ecy.1618 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1859488410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26164836</jstor_id><sourcerecordid>26164836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4328-8eda6bedf1d7f4fceb9c3a3c4a5856094b69ad23f85702b41fc183786fd2bbd73</originalsourceid><addsrcrecordid>eNqNkU2LFDEQhoMo7rgK_gEl4GUvvaY6H50cZVhXYcCLHsRDSHcqS4ae7jZJr_S_t4cZPxAU61KXh6fe4iXkObBrYKx-jd1yDQr0A7IBw01loGEPyYYxqCujpL4gT3Les3VA6Mfkom4MlwzUhnzZ4T0mdxeHO9qNQy7JxaFk6gZP2zgW7PGAJS3Uu-JoGekUh2lcEZpwwhJLvMd-oXNGT_PkSnQ9DejKnDA_JY-C6zM-O-9L8untzcftu2r34fb99s2u6gSvdaXRO9WiD-CbIEKHrem4451wUkvFjGiVcb7mQcuG1a2A0IHmjVbB123rG35Jrk7eKY1fZ8zFHmLusO_dgOOcLWhphNYC2H-gotGmFnC0vvoD3Y9zGtZHLJg1lZBGwj-pNT0AU_K3s10ac04Y7JTiwaXFArPHBu3aoD02uKIvz8K5PaD_Cf6obAWqE_At9rj8VWRvtp_Pwhcnfp_LmH75FCihueLfASzhrio</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1856110650</pqid></control><display><type>article</type><title>Leveraging constraints and biotelemetry data to pinpoint repetitively used spatial features</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Brost, Brian M. ; Hooten, Mevin B. ; Small, Robert J.</creator><creatorcontrib>Brost, Brian M. ; Hooten, Mevin B. ; Small, Robert J.</creatorcontrib><description>Satellite telemetry devices collect valuable information concerning the sites visited by animals, including the location of central places like dens, nests, rookeries, or haul-outs. Existing methods for estimating the location of central places from telemetry data require user-specified thresholds and ignore common nuances like measurement error. We present a fully model-based approach for locating central places from telemetry data that accounts for multiple sources of uncertainty and uses all of the available locational data. Our general framework consists of an observation model to account for large telemetry measurement error and animal movement, and a highly flexible mixture model specified using a Dirichlet process to identify the location of central places. We also quantify temporal patterns in central place use by incorporating ancillary behavioral data into the model; however, our framework is also suitable when no such behavioral data exist. We apply the model to a simulated data set as proof of concept. We then illustrate our framework by analyzing an Argos satellite telemetry data set on harbor seals (Phoca vitulina) in the Gulf of Alaska, a species that exhibits fidelity to terrestrial haul-out sites.</description><identifier>ISSN: 0012-9658</identifier><identifier>EISSN: 1939-9170</identifier><identifier>DOI: 10.1002/ecy.1618</identifier><identifier>PMID: 27935016</identifier><identifier>CODEN: ECGYAQ</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Alaska ; Animal behavior ; Animals ; Argos protein ; basis function ; Bayesian analysis ; Biotelemetry ; Computer simulation ; data fusion ; Dens ; Devices ; Dirichlet problem ; Dirichlet process ; Ecology ; Environmental Monitoring - methods ; Error analysis ; Estimation ; harbor seal ; hierarchical model ; integrated data model ; Marine mammals ; Measurement errors ; mixture model ; Movement ; Nests ; nonparametric ; Phoca ; Phoca vitulina ; Spatial analysis ; Statístícal Reports ; Telemetry ; temporal dependence ; Terrestrial environments ; Thresholds ; Uncertainty</subject><ispartof>Ecology (Durham), 2017-01, Vol.98 (1), p.12-20</ispartof><rights>2017 The Ecological Society of America</rights><rights>2016 by the Ecological Society of America</rights><rights>2016 by the Ecological Society of America.</rights><rights>Copyright Ecological Society of America Jan 2017</rights><rights>2017 Ecological Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4328-8eda6bedf1d7f4fceb9c3a3c4a5856094b69ad23f85702b41fc183786fd2bbd73</citedby><cites>FETCH-LOGICAL-c4328-8eda6bedf1d7f4fceb9c3a3c4a5856094b69ad23f85702b41fc183786fd2bbd73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26164836$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26164836$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,27901,27902,45550,45551,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27935016$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brost, Brian M.</creatorcontrib><creatorcontrib>Hooten, Mevin B.</creatorcontrib><creatorcontrib>Small, Robert J.</creatorcontrib><title>Leveraging constraints and biotelemetry data to pinpoint repetitively used spatial features</title><title>Ecology (Durham)</title><addtitle>Ecology</addtitle><description>Satellite telemetry devices collect valuable information concerning the sites visited by animals, including the location of central places like dens, nests, rookeries, or haul-outs. Existing methods for estimating the location of central places from telemetry data require user-specified thresholds and ignore common nuances like measurement error. We present a fully model-based approach for locating central places from telemetry data that accounts for multiple sources of uncertainty and uses all of the available locational data. Our general framework consists of an observation model to account for large telemetry measurement error and animal movement, and a highly flexible mixture model specified using a Dirichlet process to identify the location of central places. We also quantify temporal patterns in central place use by incorporating ancillary behavioral data into the model; however, our framework is also suitable when no such behavioral data exist. We apply the model to a simulated data set as proof of concept. We then illustrate our framework by analyzing an Argos satellite telemetry data set on harbor seals (Phoca vitulina) in the Gulf of Alaska, a species that exhibits fidelity to terrestrial haul-out sites.</description><subject>Alaska</subject><subject>Animal behavior</subject><subject>Animals</subject><subject>Argos protein</subject><subject>basis function</subject><subject>Bayesian analysis</subject><subject>Biotelemetry</subject><subject>Computer simulation</subject><subject>data fusion</subject><subject>Dens</subject><subject>Devices</subject><subject>Dirichlet problem</subject><subject>Dirichlet process</subject><subject>Ecology</subject><subject>Environmental Monitoring - methods</subject><subject>Error analysis</subject><subject>Estimation</subject><subject>harbor seal</subject><subject>hierarchical model</subject><subject>integrated data model</subject><subject>Marine mammals</subject><subject>Measurement errors</subject><subject>mixture model</subject><subject>Movement</subject><subject>Nests</subject><subject>nonparametric</subject><subject>Phoca</subject><subject>Phoca vitulina</subject><subject>Spatial analysis</subject><subject>Statístícal Reports</subject><subject>Telemetry</subject><subject>temporal dependence</subject><subject>Terrestrial environments</subject><subject>Thresholds</subject><subject>Uncertainty</subject><issn>0012-9658</issn><issn>1939-9170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU2LFDEQhoMo7rgK_gEl4GUvvaY6H50cZVhXYcCLHsRDSHcqS4ae7jZJr_S_t4cZPxAU61KXh6fe4iXkObBrYKx-jd1yDQr0A7IBw01loGEPyYYxqCujpL4gT3Les3VA6Mfkom4MlwzUhnzZ4T0mdxeHO9qNQy7JxaFk6gZP2zgW7PGAJS3Uu-JoGekUh2lcEZpwwhJLvMd-oXNGT_PkSnQ9DejKnDA_JY-C6zM-O-9L8untzcftu2r34fb99s2u6gSvdaXRO9WiD-CbIEKHrem4451wUkvFjGiVcb7mQcuG1a2A0IHmjVbB123rG35Jrk7eKY1fZ8zFHmLusO_dgOOcLWhphNYC2H-gotGmFnC0vvoD3Y9zGtZHLJg1lZBGwj-pNT0AU_K3s10ac04Y7JTiwaXFArPHBu3aoD02uKIvz8K5PaD_Cf6obAWqE_At9rj8VWRvtp_Pwhcnfp_LmH75FCihueLfASzhrio</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Brost, Brian M.</creator><creator>Hooten, Mevin B.</creator><creator>Small, Robert J.</creator><general>Wiley Subscription Services, Inc</general><general>Ecological Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20170101</creationdate><title>Leveraging constraints and biotelemetry data to pinpoint repetitively used spatial features</title><author>Brost, Brian M. ; Hooten, Mevin B. ; Small, Robert J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4328-8eda6bedf1d7f4fceb9c3a3c4a5856094b69ad23f85702b41fc183786fd2bbd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alaska</topic><topic>Animal behavior</topic><topic>Animals</topic><topic>Argos protein</topic><topic>basis function</topic><topic>Bayesian analysis</topic><topic>Biotelemetry</topic><topic>Computer simulation</topic><topic>data fusion</topic><topic>Dens</topic><topic>Devices</topic><topic>Dirichlet problem</topic><topic>Dirichlet process</topic><topic>Ecology</topic><topic>Environmental Monitoring - methods</topic><topic>Error analysis</topic><topic>Estimation</topic><topic>harbor seal</topic><topic>hierarchical model</topic><topic>integrated data model</topic><topic>Marine mammals</topic><topic>Measurement errors</topic><topic>mixture model</topic><topic>Movement</topic><topic>Nests</topic><topic>nonparametric</topic><topic>Phoca</topic><topic>Phoca vitulina</topic><topic>Spatial analysis</topic><topic>Statístícal Reports</topic><topic>Telemetry</topic><topic>temporal dependence</topic><topic>Terrestrial environments</topic><topic>Thresholds</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brost, Brian M.</creatorcontrib><creatorcontrib>Hooten, Mevin B.</creatorcontrib><creatorcontrib>Small, Robert J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Ecology (Durham)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brost, Brian M.</au><au>Hooten, Mevin B.</au><au>Small, Robert J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leveraging constraints and biotelemetry data to pinpoint repetitively used spatial features</atitle><jtitle>Ecology (Durham)</jtitle><addtitle>Ecology</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>98</volume><issue>1</issue><spage>12</spage><epage>20</epage><pages>12-20</pages><issn>0012-9658</issn><eissn>1939-9170</eissn><coden>ECGYAQ</coden><abstract>Satellite telemetry devices collect valuable information concerning the sites visited by animals, including the location of central places like dens, nests, rookeries, or haul-outs. Existing methods for estimating the location of central places from telemetry data require user-specified thresholds and ignore common nuances like measurement error. We present a fully model-based approach for locating central places from telemetry data that accounts for multiple sources of uncertainty and uses all of the available locational data. Our general framework consists of an observation model to account for large telemetry measurement error and animal movement, and a highly flexible mixture model specified using a Dirichlet process to identify the location of central places. We also quantify temporal patterns in central place use by incorporating ancillary behavioral data into the model; however, our framework is also suitable when no such behavioral data exist. We apply the model to a simulated data set as proof of concept. We then illustrate our framework by analyzing an Argos satellite telemetry data set on harbor seals (Phoca vitulina) in the Gulf of Alaska, a species that exhibits fidelity to terrestrial haul-out sites.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>27935016</pmid><doi>10.1002/ecy.1618</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-9658 |
ispartof | Ecology (Durham), 2017-01, Vol.98 (1), p.12-20 |
issn | 0012-9658 1939-9170 |
language | eng |
recordid | cdi_proquest_miscellaneous_1859488410 |
source | Jstor Complete Legacy; MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Alaska Animal behavior Animals Argos protein basis function Bayesian analysis Biotelemetry Computer simulation data fusion Dens Devices Dirichlet problem Dirichlet process Ecology Environmental Monitoring - methods Error analysis Estimation harbor seal hierarchical model integrated data model Marine mammals Measurement errors mixture model Movement Nests nonparametric Phoca Phoca vitulina Spatial analysis Statístícal Reports Telemetry temporal dependence Terrestrial environments Thresholds Uncertainty |
title | Leveraging constraints and biotelemetry data to pinpoint repetitively used spatial features |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A27%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leveraging%20constraints%20and%20biotelemetry%20data%20to%20pinpoint%20repetitively%20used%20spatial%20features&rft.jtitle=Ecology%20(Durham)&rft.au=Brost,%20Brian%20M.&rft.date=2017-01-01&rft.volume=98&rft.issue=1&rft.spage=12&rft.epage=20&rft.pages=12-20&rft.issn=0012-9658&rft.eissn=1939-9170&rft.coden=ECGYAQ&rft_id=info:doi/10.1002/ecy.1618&rft_dat=%3Cjstor_proqu%3E26164836%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1856110650&rft_id=info:pmid/27935016&rft_jstor_id=26164836&rfr_iscdi=true |