Lysozyme activity of the Ruminococcus champanellensis cellulosome

Summary Ruminococcus champanellensis is a keystone species in the human gut that produces an intricate cellulosome system of various architectures. A variety of cellulosomal enzymes have been identified, which exhibit a range of hydrolytic activities on lignocellulosic substrates. We describe herein...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental microbiology 2016-12, Vol.18 (12), p.5112-5122
Hauptverfasser: Moraïs, Sarah, Cockburn, Darrell W., Ben-David, Yonit, Koropatkin, Nicole M., Martens, Eric C., Duncan, Sylvia H., Flint, Harry J., Mizrahi, Itzhak, Bayer, Edward A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5122
container_issue 12
container_start_page 5112
container_title Environmental microbiology
container_volume 18
creator Moraïs, Sarah
Cockburn, Darrell W.
Ben-David, Yonit
Koropatkin, Nicole M.
Martens, Eric C.
Duncan, Sylvia H.
Flint, Harry J.
Mizrahi, Itzhak
Bayer, Edward A.
description Summary Ruminococcus champanellensis is a keystone species in the human gut that produces an intricate cellulosome system of various architectures. A variety of cellulosomal enzymes have been identified, which exhibit a range of hydrolytic activities on lignocellulosic substrates. We describe herein a unique R. champanellensis scaffoldin, ScaK, which is expressed during growth on cellobiose and comprises a cohesin module and a family 25 glycoside hydrolase (GH25). The GH25 is non‐autolytic and exhibits lysozyme‐mediated lytic activity against several bacterial species. Despite the narrow acidic pH curve, the enzyme is active along a temperature range from 2 to 85°C and is stable at very high temperatures for extended incubation periods. The ScaK cohesin was shown to bind selectively to the dockerin of a monovalent scaffoldin (ScaG), thus enabling formation of a cell‐free cellulosome, whereby ScaG interacts with a divalent scaffodin (ScaA) that bears the enzymes either directly or through additional monovalent scaffoldins (ScaC and ScaD). The ScaK cohesin also interacts with the dockerin of a protein comprising multiple Fn3 domains that can potentially promote adhesion to carbohydrates and the bacterial cell surface. A cell‐free cellulosomal GH25 lysozyme may provide a bacterial strategy to both hydrolyze lignocellulose and repel eventual food competitors and/or cheaters.
doi_str_mv 10.1111/1462-2920.13501
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1859486701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1851690252</sourcerecordid><originalsourceid>FETCH-LOGICAL-i3971-832864d860ec2f3f7046b6365f272f982dd7da7cd3973959b419ad8bddbf51103</originalsourceid><addsrcrecordid>eNqNkTtPwzAUhS0EolCY2VAkFpaAH_FrhKqUogLiPVpJ7AhDUpc4AcKvx22hAxNefK79natrHwD2EDxCYR2jhOEYSxxKQiFaA1urk_WVRrgHtr1_gRBxwuEm6GFOKcWIboGTSefdV1eZKM0b-26bLnJF1Dyb6Lat7NTlLs9bH-XPaTVLp6YszdTbUAfVls67yuyAjSItvdn92fvg4Wx4PziPJ9ej8eBkElsiOYoFwYIlWjBoclyQgsOEZYwwWmCOCymw1lynPNeBJpLKLEEy1SLTOisoQpD0weGy76x2b63xjaqsn88RxnKtV0hQmQjGIfoPipiEmOKAHvxBX1xbT8NDFhRMiJA0UPs_VJtVRqtZbau07tTvPwaALoEPW5pudY-gmsek5kGoeShqEZMaXo4XIvjipc_6xnyufGn9qljIiqqnq5Hij-L04g7dqAn5BubhkRs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1851043895</pqid></control><display><type>article</type><title>Lysozyme activity of the Ruminococcus champanellensis cellulosome</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><creator>Moraïs, Sarah ; Cockburn, Darrell W. ; Ben-David, Yonit ; Koropatkin, Nicole M. ; Martens, Eric C. ; Duncan, Sylvia H. ; Flint, Harry J. ; Mizrahi, Itzhak ; Bayer, Edward A.</creator><creatorcontrib>Moraïs, Sarah ; Cockburn, Darrell W. ; Ben-David, Yonit ; Koropatkin, Nicole M. ; Martens, Eric C. ; Duncan, Sylvia H. ; Flint, Harry J. ; Mizrahi, Itzhak ; Bayer, Edward A.</creatorcontrib><description>Summary Ruminococcus champanellensis is a keystone species in the human gut that produces an intricate cellulosome system of various architectures. A variety of cellulosomal enzymes have been identified, which exhibit a range of hydrolytic activities on lignocellulosic substrates. We describe herein a unique R. champanellensis scaffoldin, ScaK, which is expressed during growth on cellobiose and comprises a cohesin module and a family 25 glycoside hydrolase (GH25). The GH25 is non‐autolytic and exhibits lysozyme‐mediated lytic activity against several bacterial species. Despite the narrow acidic pH curve, the enzyme is active along a temperature range from 2 to 85°C and is stable at very high temperatures for extended incubation periods. The ScaK cohesin was shown to bind selectively to the dockerin of a monovalent scaffoldin (ScaG), thus enabling formation of a cell‐free cellulosome, whereby ScaG interacts with a divalent scaffodin (ScaA) that bears the enzymes either directly or through additional monovalent scaffoldins (ScaC and ScaD). The ScaK cohesin also interacts with the dockerin of a protein comprising multiple Fn3 domains that can potentially promote adhesion to carbohydrates and the bacterial cell surface. A cell‐free cellulosomal GH25 lysozyme may provide a bacterial strategy to both hydrolyze lignocellulose and repel eventual food competitors and/or cheaters.</description><identifier>ISSN: 1462-2912</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/1462-2920.13501</identifier><identifier>PMID: 27555215</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Cell Membrane - metabolism ; Cellulose - metabolism ; Cellulosomes - enzymology ; Cellulosomes - genetics ; Cellulosomes - metabolism ; Humans ; Muramidase - genetics ; Muramidase - metabolism ; Ruminococcus ; Ruminococcus - enzymology ; Ruminococcus - genetics ; Ruminococcus - metabolism</subject><ispartof>Environmental microbiology, 2016-12, Vol.18 (12), p.5112-5122</ispartof><rights>2016 Society for Applied Microbiology and John Wiley &amp; Sons Ltd</rights><rights>2016 Society for Applied Microbiology and John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1462-2920.13501$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1462-2920.13501$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27555215$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moraïs, Sarah</creatorcontrib><creatorcontrib>Cockburn, Darrell W.</creatorcontrib><creatorcontrib>Ben-David, Yonit</creatorcontrib><creatorcontrib>Koropatkin, Nicole M.</creatorcontrib><creatorcontrib>Martens, Eric C.</creatorcontrib><creatorcontrib>Duncan, Sylvia H.</creatorcontrib><creatorcontrib>Flint, Harry J.</creatorcontrib><creatorcontrib>Mizrahi, Itzhak</creatorcontrib><creatorcontrib>Bayer, Edward A.</creatorcontrib><title>Lysozyme activity of the Ruminococcus champanellensis cellulosome</title><title>Environmental microbiology</title><addtitle>Environmental Microbiology</addtitle><description>Summary Ruminococcus champanellensis is a keystone species in the human gut that produces an intricate cellulosome system of various architectures. A variety of cellulosomal enzymes have been identified, which exhibit a range of hydrolytic activities on lignocellulosic substrates. We describe herein a unique R. champanellensis scaffoldin, ScaK, which is expressed during growth on cellobiose and comprises a cohesin module and a family 25 glycoside hydrolase (GH25). The GH25 is non‐autolytic and exhibits lysozyme‐mediated lytic activity against several bacterial species. Despite the narrow acidic pH curve, the enzyme is active along a temperature range from 2 to 85°C and is stable at very high temperatures for extended incubation periods. The ScaK cohesin was shown to bind selectively to the dockerin of a monovalent scaffoldin (ScaG), thus enabling formation of a cell‐free cellulosome, whereby ScaG interacts with a divalent scaffodin (ScaA) that bears the enzymes either directly or through additional monovalent scaffoldins (ScaC and ScaD). The ScaK cohesin also interacts with the dockerin of a protein comprising multiple Fn3 domains that can potentially promote adhesion to carbohydrates and the bacterial cell surface. A cell‐free cellulosomal GH25 lysozyme may provide a bacterial strategy to both hydrolyze lignocellulose and repel eventual food competitors and/or cheaters.</description><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Cell Membrane - metabolism</subject><subject>Cellulose - metabolism</subject><subject>Cellulosomes - enzymology</subject><subject>Cellulosomes - genetics</subject><subject>Cellulosomes - metabolism</subject><subject>Humans</subject><subject>Muramidase - genetics</subject><subject>Muramidase - metabolism</subject><subject>Ruminococcus</subject><subject>Ruminococcus - enzymology</subject><subject>Ruminococcus - genetics</subject><subject>Ruminococcus - metabolism</subject><issn>1462-2912</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkTtPwzAUhS0EolCY2VAkFpaAH_FrhKqUogLiPVpJ7AhDUpc4AcKvx22hAxNefK79natrHwD2EDxCYR2jhOEYSxxKQiFaA1urk_WVRrgHtr1_gRBxwuEm6GFOKcWIboGTSefdV1eZKM0b-26bLnJF1Dyb6Lat7NTlLs9bH-XPaTVLp6YszdTbUAfVls67yuyAjSItvdn92fvg4Wx4PziPJ9ej8eBkElsiOYoFwYIlWjBoclyQgsOEZYwwWmCOCymw1lynPNeBJpLKLEEy1SLTOisoQpD0weGy76x2b63xjaqsn88RxnKtV0hQmQjGIfoPipiEmOKAHvxBX1xbT8NDFhRMiJA0UPs_VJtVRqtZbau07tTvPwaALoEPW5pudY-gmsek5kGoeShqEZMaXo4XIvjipc_6xnyufGn9qljIiqqnq5Hij-L04g7dqAn5BubhkRs</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Moraïs, Sarah</creator><creator>Cockburn, Darrell W.</creator><creator>Ben-David, Yonit</creator><creator>Koropatkin, Nicole M.</creator><creator>Martens, Eric C.</creator><creator>Duncan, Sylvia H.</creator><creator>Flint, Harry J.</creator><creator>Mizrahi, Itzhak</creator><creator>Bayer, Edward A.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QH</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201612</creationdate><title>Lysozyme activity of the Ruminococcus champanellensis cellulosome</title><author>Moraïs, Sarah ; Cockburn, Darrell W. ; Ben-David, Yonit ; Koropatkin, Nicole M. ; Martens, Eric C. ; Duncan, Sylvia H. ; Flint, Harry J. ; Mizrahi, Itzhak ; Bayer, Edward A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i3971-832864d860ec2f3f7046b6365f272f982dd7da7cd3973959b419ad8bddbf51103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Cell Membrane - metabolism</topic><topic>Cellulose - metabolism</topic><topic>Cellulosomes - enzymology</topic><topic>Cellulosomes - genetics</topic><topic>Cellulosomes - metabolism</topic><topic>Humans</topic><topic>Muramidase - genetics</topic><topic>Muramidase - metabolism</topic><topic>Ruminococcus</topic><topic>Ruminococcus - enzymology</topic><topic>Ruminococcus - genetics</topic><topic>Ruminococcus - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moraïs, Sarah</creatorcontrib><creatorcontrib>Cockburn, Darrell W.</creatorcontrib><creatorcontrib>Ben-David, Yonit</creatorcontrib><creatorcontrib>Koropatkin, Nicole M.</creatorcontrib><creatorcontrib>Martens, Eric C.</creatorcontrib><creatorcontrib>Duncan, Sylvia H.</creatorcontrib><creatorcontrib>Flint, Harry J.</creatorcontrib><creatorcontrib>Mizrahi, Itzhak</creatorcontrib><creatorcontrib>Bayer, Edward A.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moraïs, Sarah</au><au>Cockburn, Darrell W.</au><au>Ben-David, Yonit</au><au>Koropatkin, Nicole M.</au><au>Martens, Eric C.</au><au>Duncan, Sylvia H.</au><au>Flint, Harry J.</au><au>Mizrahi, Itzhak</au><au>Bayer, Edward A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lysozyme activity of the Ruminococcus champanellensis cellulosome</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environmental Microbiology</addtitle><date>2016-12</date><risdate>2016</risdate><volume>18</volume><issue>12</issue><spage>5112</spage><epage>5122</epage><pages>5112-5122</pages><issn>1462-2912</issn><eissn>1462-2920</eissn><abstract>Summary Ruminococcus champanellensis is a keystone species in the human gut that produces an intricate cellulosome system of various architectures. A variety of cellulosomal enzymes have been identified, which exhibit a range of hydrolytic activities on lignocellulosic substrates. We describe herein a unique R. champanellensis scaffoldin, ScaK, which is expressed during growth on cellobiose and comprises a cohesin module and a family 25 glycoside hydrolase (GH25). The GH25 is non‐autolytic and exhibits lysozyme‐mediated lytic activity against several bacterial species. Despite the narrow acidic pH curve, the enzyme is active along a temperature range from 2 to 85°C and is stable at very high temperatures for extended incubation periods. The ScaK cohesin was shown to bind selectively to the dockerin of a monovalent scaffoldin (ScaG), thus enabling formation of a cell‐free cellulosome, whereby ScaG interacts with a divalent scaffodin (ScaA) that bears the enzymes either directly or through additional monovalent scaffoldins (ScaC and ScaD). The ScaK cohesin also interacts with the dockerin of a protein comprising multiple Fn3 domains that can potentially promote adhesion to carbohydrates and the bacterial cell surface. A cell‐free cellulosomal GH25 lysozyme may provide a bacterial strategy to both hydrolyze lignocellulose and repel eventual food competitors and/or cheaters.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>27555215</pmid><doi>10.1111/1462-2920.13501</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1462-2912
ispartof Environmental microbiology, 2016-12, Vol.18 (12), p.5112-5122
issn 1462-2912
1462-2920
language eng
recordid cdi_proquest_miscellaneous_1859486701
source Wiley-Blackwell Journals; MEDLINE
subjects Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Cell Membrane - metabolism
Cellulose - metabolism
Cellulosomes - enzymology
Cellulosomes - genetics
Cellulosomes - metabolism
Humans
Muramidase - genetics
Muramidase - metabolism
Ruminococcus
Ruminococcus - enzymology
Ruminococcus - genetics
Ruminococcus - metabolism
title Lysozyme activity of the Ruminococcus champanellensis cellulosome
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T19%3A31%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lysozyme%20activity%20of%20the%20Ruminococcus%20champanellensis%20cellulosome&rft.jtitle=Environmental%20microbiology&rft.au=Mora%C3%AFs,%20Sarah&rft.date=2016-12&rft.volume=18&rft.issue=12&rft.spage=5112&rft.epage=5122&rft.pages=5112-5122&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/1462-2920.13501&rft_dat=%3Cproquest_pubme%3E1851690252%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1851043895&rft_id=info:pmid/27555215&rfr_iscdi=true