Nitrogen and phosphorus mass balance, retention and uptake in six plant species grown in stormwater bioretention microcosms
•98% recovery of TP mass provides confidence in uptake and removal efficiency results.•Planted systems can optimize TP and TN removal efficiency from stormwater runoff.•Phr, Cap and Cam yield higher uptake of TN and TP than Typ, Scv, or Sca. Stormwater runoff contains high levels of nutrients, and i...
Gespeichert in:
Veröffentlicht in: | Ecological engineering 2017-02, Vol.99, p.409-416 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 416 |
---|---|
container_issue | |
container_start_page | 409 |
container_title | Ecological engineering |
container_volume | 99 |
creator | Rycewicz-Borecki, Malgorzata McLean, Joan E. Dupont, R. Ryan |
description | •98% recovery of TP mass provides confidence in uptake and removal efficiency results.•Planted systems can optimize TP and TN removal efficiency from stormwater runoff.•Phr, Cap and Cam yield higher uptake of TN and TP than Typ, Scv, or Sca.
Stormwater runoff contains high levels of nutrients, and is regulated by the Federal National Pollution Discharge Elimination System (NPDES) to protect surface water quality. Stormwater bioretention (BR) systems are increasingly used to address these regulations. Planted BR systems remove significantly more pollutants than unplanted systems, but most studies do not attempt to verify a pollutant mass balance and seldom evaluate differences in nutrient uptake among species. This greenhouse experiment proved that an overall 98% recovery of Total Phosphorus (TP) mass over the study period was feasible for six plant species, ensuring accuracy of measurements and analyses. Additionally, it was found that Phragmites australis, Carex praegracilis, and Carex microptera uptake significantly more TP and Total Nitrogen (TN) mass into harvestable tissue than Typha latifolia, Scirpus validus, and Scirpus acutus. These results confirm that species selection can optimize nutrient retention and recovery from stormwater and decrease pollutant discharge to surface waters. |
doi_str_mv | 10.1016/j.ecoleng.2016.11.020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1859472594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925857416306425</els_id><sourcerecordid>1931709263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-899fbd2ffebf0de9fd2ed951ab9b0803dde4a028a1b622cd50bc2b0b3eebb3963</originalsourceid><addsrcrecordid>eNqFkctqHDEQRYWJwRPbn2AQZJNFuiOpn1qFYPwCE2_stdCjeqzJdKujUsc2_nlrMoZANlkUotCpS9W9hJxxVnLG26-bEmzYwrQuRW5Lzksm2AFZ8b4TRSul-EBWTIqm6JuuPiIfETeMsU40ckVef_gUwxomqidH58eAueKCdNSI1Oitnix8oRESTMmHPbbMSf8E6ieK_pnOmUkUZ7AekK5jeJr-fKUQxyedIFLjw1-B0dsYbMART8jhoLcIp-_vMXm4vLg_vy5u765uzr_fFrZmXSp6KQfjxDCAGZgDOTgBTjZcG2lYzyrnoNZM9JqbVgjrGmasMMxUAMZUsq2Oyee97hzDrwUwqdGjhW3eG8KCiveNrHd21Bn99A-6CUuc8naKy4p32ca2ylSzp_IliBEGNUc_6viiOFO7SNRGvUeidpEozlWOJM99289Bvva3h6gwe5YNdj6CTcoF_x-FN7eXm00</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1931709263</pqid></control><display><type>article</type><title>Nitrogen and phosphorus mass balance, retention and uptake in six plant species grown in stormwater bioretention microcosms</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Rycewicz-Borecki, Malgorzata ; McLean, Joan E. ; Dupont, R. Ryan</creator><creatorcontrib>Rycewicz-Borecki, Malgorzata ; McLean, Joan E. ; Dupont, R. Ryan</creatorcontrib><description>•98% recovery of TP mass provides confidence in uptake and removal efficiency results.•Planted systems can optimize TP and TN removal efficiency from stormwater runoff.•Phr, Cap and Cam yield higher uptake of TN and TP than Typ, Scv, or Sca.
Stormwater runoff contains high levels of nutrients, and is regulated by the Federal National Pollution Discharge Elimination System (NPDES) to protect surface water quality. Stormwater bioretention (BR) systems are increasingly used to address these regulations. Planted BR systems remove significantly more pollutants than unplanted systems, but most studies do not attempt to verify a pollutant mass balance and seldom evaluate differences in nutrient uptake among species. This greenhouse experiment proved that an overall 98% recovery of Total Phosphorus (TP) mass over the study period was feasible for six plant species, ensuring accuracy of measurements and analyses. Additionally, it was found that Phragmites australis, Carex praegracilis, and Carex microptera uptake significantly more TP and Total Nitrogen (TN) mass into harvestable tissue than Typha latifolia, Scirpus validus, and Scirpus acutus. These results confirm that species selection can optimize nutrient retention and recovery from stormwater and decrease pollutant discharge to surface waters.</description><identifier>ISSN: 0925-8574</identifier><identifier>EISSN: 1872-6992</identifier><identifier>DOI: 10.1016/j.ecoleng.2016.11.020</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Aquatic plants ; Bioretention ; Carex microptera ; Carex praegracilis ; Discharge ; Feasibility studies ; Freshwater plants ; Greenhouse ; Greenhouses ; Marshes ; Mass ; Microcosms ; Mineral nutrients ; Nutrient balance ; Nutrient retention ; Nutrient uptake ; Nutrients ; Phosphorus ; Phosphorus content ; Phragmites australis ; Plant species ; Pollutant removal ; Pollutants ; Pollution abatement ; Recovery ; Retention ; Retention basins ; Runoff ; Scirpus acutus ; Scirpus validus ; Species ; Storm runoff ; Storm sewers ; Stormwater ; Stormwater BMP ; Stormwater management ; Stormwater runoff ; Surface water ; Tissue ; Typha latifolia ; Uptake ; Vegetation ; Water pollution ; Water quality</subject><ispartof>Ecological engineering, 2017-02, Vol.99, p.409-416</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright Elsevier BV Feb 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-899fbd2ffebf0de9fd2ed951ab9b0803dde4a028a1b622cd50bc2b0b3eebb3963</citedby><cites>FETCH-LOGICAL-c407t-899fbd2ffebf0de9fd2ed951ab9b0803dde4a028a1b622cd50bc2b0b3eebb3963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ecoleng.2016.11.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Rycewicz-Borecki, Malgorzata</creatorcontrib><creatorcontrib>McLean, Joan E.</creatorcontrib><creatorcontrib>Dupont, R. Ryan</creatorcontrib><title>Nitrogen and phosphorus mass balance, retention and uptake in six plant species grown in stormwater bioretention microcosms</title><title>Ecological engineering</title><description>•98% recovery of TP mass provides confidence in uptake and removal efficiency results.•Planted systems can optimize TP and TN removal efficiency from stormwater runoff.•Phr, Cap and Cam yield higher uptake of TN and TP than Typ, Scv, or Sca.
Stormwater runoff contains high levels of nutrients, and is regulated by the Federal National Pollution Discharge Elimination System (NPDES) to protect surface water quality. Stormwater bioretention (BR) systems are increasingly used to address these regulations. Planted BR systems remove significantly more pollutants than unplanted systems, but most studies do not attempt to verify a pollutant mass balance and seldom evaluate differences in nutrient uptake among species. This greenhouse experiment proved that an overall 98% recovery of Total Phosphorus (TP) mass over the study period was feasible for six plant species, ensuring accuracy of measurements and analyses. Additionally, it was found that Phragmites australis, Carex praegracilis, and Carex microptera uptake significantly more TP and Total Nitrogen (TN) mass into harvestable tissue than Typha latifolia, Scirpus validus, and Scirpus acutus. These results confirm that species selection can optimize nutrient retention and recovery from stormwater and decrease pollutant discharge to surface waters.</description><subject>Aquatic plants</subject><subject>Bioretention</subject><subject>Carex microptera</subject><subject>Carex praegracilis</subject><subject>Discharge</subject><subject>Feasibility studies</subject><subject>Freshwater plants</subject><subject>Greenhouse</subject><subject>Greenhouses</subject><subject>Marshes</subject><subject>Mass</subject><subject>Microcosms</subject><subject>Mineral nutrients</subject><subject>Nutrient balance</subject><subject>Nutrient retention</subject><subject>Nutrient uptake</subject><subject>Nutrients</subject><subject>Phosphorus</subject><subject>Phosphorus content</subject><subject>Phragmites australis</subject><subject>Plant species</subject><subject>Pollutant removal</subject><subject>Pollutants</subject><subject>Pollution abatement</subject><subject>Recovery</subject><subject>Retention</subject><subject>Retention basins</subject><subject>Runoff</subject><subject>Scirpus acutus</subject><subject>Scirpus validus</subject><subject>Species</subject><subject>Storm runoff</subject><subject>Storm sewers</subject><subject>Stormwater</subject><subject>Stormwater BMP</subject><subject>Stormwater management</subject><subject>Stormwater runoff</subject><subject>Surface water</subject><subject>Tissue</subject><subject>Typha latifolia</subject><subject>Uptake</subject><subject>Vegetation</subject><subject>Water pollution</subject><subject>Water quality</subject><issn>0925-8574</issn><issn>1872-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkctqHDEQRYWJwRPbn2AQZJNFuiOpn1qFYPwCE2_stdCjeqzJdKujUsc2_nlrMoZANlkUotCpS9W9hJxxVnLG26-bEmzYwrQuRW5Lzksm2AFZ8b4TRSul-EBWTIqm6JuuPiIfETeMsU40ckVef_gUwxomqidH58eAueKCdNSI1Oitnix8oRESTMmHPbbMSf8E6ieK_pnOmUkUZ7AekK5jeJr-fKUQxyedIFLjw1-B0dsYbMART8jhoLcIp-_vMXm4vLg_vy5u765uzr_fFrZmXSp6KQfjxDCAGZgDOTgBTjZcG2lYzyrnoNZM9JqbVgjrGmasMMxUAMZUsq2Oyee97hzDrwUwqdGjhW3eG8KCiveNrHd21Bn99A-6CUuc8naKy4p32ca2ylSzp_IliBEGNUc_6viiOFO7SNRGvUeidpEozlWOJM99289Bvva3h6gwe5YNdj6CTcoF_x-FN7eXm00</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Rycewicz-Borecki, Malgorzata</creator><creator>McLean, Joan E.</creator><creator>Dupont, R. Ryan</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QO</scope><scope>7SN</scope><scope>7T7</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H97</scope><scope>L.G</scope><scope>P64</scope></search><sort><creationdate>20170201</creationdate><title>Nitrogen and phosphorus mass balance, retention and uptake in six plant species grown in stormwater bioretention microcosms</title><author>Rycewicz-Borecki, Malgorzata ; McLean, Joan E. ; Dupont, R. Ryan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-899fbd2ffebf0de9fd2ed951ab9b0803dde4a028a1b622cd50bc2b0b3eebb3963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aquatic plants</topic><topic>Bioretention</topic><topic>Carex microptera</topic><topic>Carex praegracilis</topic><topic>Discharge</topic><topic>Feasibility studies</topic><topic>Freshwater plants</topic><topic>Greenhouse</topic><topic>Greenhouses</topic><topic>Marshes</topic><topic>Mass</topic><topic>Microcosms</topic><topic>Mineral nutrients</topic><topic>Nutrient balance</topic><topic>Nutrient retention</topic><topic>Nutrient uptake</topic><topic>Nutrients</topic><topic>Phosphorus</topic><topic>Phosphorus content</topic><topic>Phragmites australis</topic><topic>Plant species</topic><topic>Pollutant removal</topic><topic>Pollutants</topic><topic>Pollution abatement</topic><topic>Recovery</topic><topic>Retention</topic><topic>Retention basins</topic><topic>Runoff</topic><topic>Scirpus acutus</topic><topic>Scirpus validus</topic><topic>Species</topic><topic>Storm runoff</topic><topic>Storm sewers</topic><topic>Stormwater</topic><topic>Stormwater BMP</topic><topic>Stormwater management</topic><topic>Stormwater runoff</topic><topic>Surface water</topic><topic>Tissue</topic><topic>Typha latifolia</topic><topic>Uptake</topic><topic>Vegetation</topic><topic>Water pollution</topic><topic>Water quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rycewicz-Borecki, Malgorzata</creatorcontrib><creatorcontrib>McLean, Joan E.</creatorcontrib><creatorcontrib>Dupont, R. Ryan</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Ecological engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rycewicz-Borecki, Malgorzata</au><au>McLean, Joan E.</au><au>Dupont, R. Ryan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrogen and phosphorus mass balance, retention and uptake in six plant species grown in stormwater bioretention microcosms</atitle><jtitle>Ecological engineering</jtitle><date>2017-02-01</date><risdate>2017</risdate><volume>99</volume><spage>409</spage><epage>416</epage><pages>409-416</pages><issn>0925-8574</issn><eissn>1872-6992</eissn><abstract>•98% recovery of TP mass provides confidence in uptake and removal efficiency results.•Planted systems can optimize TP and TN removal efficiency from stormwater runoff.•Phr, Cap and Cam yield higher uptake of TN and TP than Typ, Scv, or Sca.
Stormwater runoff contains high levels of nutrients, and is regulated by the Federal National Pollution Discharge Elimination System (NPDES) to protect surface water quality. Stormwater bioretention (BR) systems are increasingly used to address these regulations. Planted BR systems remove significantly more pollutants than unplanted systems, but most studies do not attempt to verify a pollutant mass balance and seldom evaluate differences in nutrient uptake among species. This greenhouse experiment proved that an overall 98% recovery of Total Phosphorus (TP) mass over the study period was feasible for six plant species, ensuring accuracy of measurements and analyses. Additionally, it was found that Phragmites australis, Carex praegracilis, and Carex microptera uptake significantly more TP and Total Nitrogen (TN) mass into harvestable tissue than Typha latifolia, Scirpus validus, and Scirpus acutus. These results confirm that species selection can optimize nutrient retention and recovery from stormwater and decrease pollutant discharge to surface waters.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ecoleng.2016.11.020</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-8574 |
ispartof | Ecological engineering, 2017-02, Vol.99, p.409-416 |
issn | 0925-8574 1872-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_1859472594 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Aquatic plants Bioretention Carex microptera Carex praegracilis Discharge Feasibility studies Freshwater plants Greenhouse Greenhouses Marshes Mass Microcosms Mineral nutrients Nutrient balance Nutrient retention Nutrient uptake Nutrients Phosphorus Phosphorus content Phragmites australis Plant species Pollutant removal Pollutants Pollution abatement Recovery Retention Retention basins Runoff Scirpus acutus Scirpus validus Species Storm runoff Storm sewers Stormwater Stormwater BMP Stormwater management Stormwater runoff Surface water Tissue Typha latifolia Uptake Vegetation Water pollution Water quality |
title | Nitrogen and phosphorus mass balance, retention and uptake in six plant species grown in stormwater bioretention microcosms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A35%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrogen%20and%20phosphorus%20mass%20balance,%20retention%20and%20uptake%20in%20six%20plant%20species%20grown%20in%20stormwater%20bioretention%20microcosms&rft.jtitle=Ecological%20engineering&rft.au=Rycewicz-Borecki,%20Malgorzata&rft.date=2017-02-01&rft.volume=99&rft.spage=409&rft.epage=416&rft.pages=409-416&rft.issn=0925-8574&rft.eissn=1872-6992&rft_id=info:doi/10.1016/j.ecoleng.2016.11.020&rft_dat=%3Cproquest_cross%3E1931709263%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1931709263&rft_id=info:pmid/&rft_els_id=S0925857416306425&rfr_iscdi=true |