Nitrogen and phosphorus mass balance, retention and uptake in six plant species grown in stormwater bioretention microcosms

•98% recovery of TP mass provides confidence in uptake and removal efficiency results.•Planted systems can optimize TP and TN removal efficiency from stormwater runoff.•Phr, Cap and Cam yield higher uptake of TN and TP than Typ, Scv, or Sca. Stormwater runoff contains high levels of nutrients, and i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecological engineering 2017-02, Vol.99, p.409-416
Hauptverfasser: Rycewicz-Borecki, Malgorzata, McLean, Joan E., Dupont, R. Ryan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 416
container_issue
container_start_page 409
container_title Ecological engineering
container_volume 99
creator Rycewicz-Borecki, Malgorzata
McLean, Joan E.
Dupont, R. Ryan
description •98% recovery of TP mass provides confidence in uptake and removal efficiency results.•Planted systems can optimize TP and TN removal efficiency from stormwater runoff.•Phr, Cap and Cam yield higher uptake of TN and TP than Typ, Scv, or Sca. Stormwater runoff contains high levels of nutrients, and is regulated by the Federal National Pollution Discharge Elimination System (NPDES) to protect surface water quality. Stormwater bioretention (BR) systems are increasingly used to address these regulations. Planted BR systems remove significantly more pollutants than unplanted systems, but most studies do not attempt to verify a pollutant mass balance and seldom evaluate differences in nutrient uptake among species. This greenhouse experiment proved that an overall 98% recovery of Total Phosphorus (TP) mass over the study period was feasible for six plant species, ensuring accuracy of measurements and analyses. Additionally, it was found that Phragmites australis, Carex praegracilis, and Carex microptera uptake significantly more TP and Total Nitrogen (TN) mass into harvestable tissue than Typha latifolia, Scirpus validus, and Scirpus acutus. These results confirm that species selection can optimize nutrient retention and recovery from stormwater and decrease pollutant discharge to surface waters.
doi_str_mv 10.1016/j.ecoleng.2016.11.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1859472594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925857416306425</els_id><sourcerecordid>1931709263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-899fbd2ffebf0de9fd2ed951ab9b0803dde4a028a1b622cd50bc2b0b3eebb3963</originalsourceid><addsrcrecordid>eNqFkctqHDEQRYWJwRPbn2AQZJNFuiOpn1qFYPwCE2_stdCjeqzJdKujUsc2_nlrMoZANlkUotCpS9W9hJxxVnLG26-bEmzYwrQuRW5Lzksm2AFZ8b4TRSul-EBWTIqm6JuuPiIfETeMsU40ckVef_gUwxomqidH58eAueKCdNSI1Oitnix8oRESTMmHPbbMSf8E6ieK_pnOmUkUZ7AekK5jeJr-fKUQxyedIFLjw1-B0dsYbMART8jhoLcIp-_vMXm4vLg_vy5u765uzr_fFrZmXSp6KQfjxDCAGZgDOTgBTjZcG2lYzyrnoNZM9JqbVgjrGmasMMxUAMZUsq2Oyee97hzDrwUwqdGjhW3eG8KCiveNrHd21Bn99A-6CUuc8naKy4p32ca2ylSzp_IliBEGNUc_6viiOFO7SNRGvUeidpEozlWOJM99289Bvva3h6gwe5YNdj6CTcoF_x-FN7eXm00</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1931709263</pqid></control><display><type>article</type><title>Nitrogen and phosphorus mass balance, retention and uptake in six plant species grown in stormwater bioretention microcosms</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Rycewicz-Borecki, Malgorzata ; McLean, Joan E. ; Dupont, R. Ryan</creator><creatorcontrib>Rycewicz-Borecki, Malgorzata ; McLean, Joan E. ; Dupont, R. Ryan</creatorcontrib><description>•98% recovery of TP mass provides confidence in uptake and removal efficiency results.•Planted systems can optimize TP and TN removal efficiency from stormwater runoff.•Phr, Cap and Cam yield higher uptake of TN and TP than Typ, Scv, or Sca. Stormwater runoff contains high levels of nutrients, and is regulated by the Federal National Pollution Discharge Elimination System (NPDES) to protect surface water quality. Stormwater bioretention (BR) systems are increasingly used to address these regulations. Planted BR systems remove significantly more pollutants than unplanted systems, but most studies do not attempt to verify a pollutant mass balance and seldom evaluate differences in nutrient uptake among species. This greenhouse experiment proved that an overall 98% recovery of Total Phosphorus (TP) mass over the study period was feasible for six plant species, ensuring accuracy of measurements and analyses. Additionally, it was found that Phragmites australis, Carex praegracilis, and Carex microptera uptake significantly more TP and Total Nitrogen (TN) mass into harvestable tissue than Typha latifolia, Scirpus validus, and Scirpus acutus. These results confirm that species selection can optimize nutrient retention and recovery from stormwater and decrease pollutant discharge to surface waters.</description><identifier>ISSN: 0925-8574</identifier><identifier>EISSN: 1872-6992</identifier><identifier>DOI: 10.1016/j.ecoleng.2016.11.020</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Aquatic plants ; Bioretention ; Carex microptera ; Carex praegracilis ; Discharge ; Feasibility studies ; Freshwater plants ; Greenhouse ; Greenhouses ; Marshes ; Mass ; Microcosms ; Mineral nutrients ; Nutrient balance ; Nutrient retention ; Nutrient uptake ; Nutrients ; Phosphorus ; Phosphorus content ; Phragmites australis ; Plant species ; Pollutant removal ; Pollutants ; Pollution abatement ; Recovery ; Retention ; Retention basins ; Runoff ; Scirpus acutus ; Scirpus validus ; Species ; Storm runoff ; Storm sewers ; Stormwater ; Stormwater BMP ; Stormwater management ; Stormwater runoff ; Surface water ; Tissue ; Typha latifolia ; Uptake ; Vegetation ; Water pollution ; Water quality</subject><ispartof>Ecological engineering, 2017-02, Vol.99, p.409-416</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright Elsevier BV Feb 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-899fbd2ffebf0de9fd2ed951ab9b0803dde4a028a1b622cd50bc2b0b3eebb3963</citedby><cites>FETCH-LOGICAL-c407t-899fbd2ffebf0de9fd2ed951ab9b0803dde4a028a1b622cd50bc2b0b3eebb3963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ecoleng.2016.11.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Rycewicz-Borecki, Malgorzata</creatorcontrib><creatorcontrib>McLean, Joan E.</creatorcontrib><creatorcontrib>Dupont, R. Ryan</creatorcontrib><title>Nitrogen and phosphorus mass balance, retention and uptake in six plant species grown in stormwater bioretention microcosms</title><title>Ecological engineering</title><description>•98% recovery of TP mass provides confidence in uptake and removal efficiency results.•Planted systems can optimize TP and TN removal efficiency from stormwater runoff.•Phr, Cap and Cam yield higher uptake of TN and TP than Typ, Scv, or Sca. Stormwater runoff contains high levels of nutrients, and is regulated by the Federal National Pollution Discharge Elimination System (NPDES) to protect surface water quality. Stormwater bioretention (BR) systems are increasingly used to address these regulations. Planted BR systems remove significantly more pollutants than unplanted systems, but most studies do not attempt to verify a pollutant mass balance and seldom evaluate differences in nutrient uptake among species. This greenhouse experiment proved that an overall 98% recovery of Total Phosphorus (TP) mass over the study period was feasible for six plant species, ensuring accuracy of measurements and analyses. Additionally, it was found that Phragmites australis, Carex praegracilis, and Carex microptera uptake significantly more TP and Total Nitrogen (TN) mass into harvestable tissue than Typha latifolia, Scirpus validus, and Scirpus acutus. These results confirm that species selection can optimize nutrient retention and recovery from stormwater and decrease pollutant discharge to surface waters.</description><subject>Aquatic plants</subject><subject>Bioretention</subject><subject>Carex microptera</subject><subject>Carex praegracilis</subject><subject>Discharge</subject><subject>Feasibility studies</subject><subject>Freshwater plants</subject><subject>Greenhouse</subject><subject>Greenhouses</subject><subject>Marshes</subject><subject>Mass</subject><subject>Microcosms</subject><subject>Mineral nutrients</subject><subject>Nutrient balance</subject><subject>Nutrient retention</subject><subject>Nutrient uptake</subject><subject>Nutrients</subject><subject>Phosphorus</subject><subject>Phosphorus content</subject><subject>Phragmites australis</subject><subject>Plant species</subject><subject>Pollutant removal</subject><subject>Pollutants</subject><subject>Pollution abatement</subject><subject>Recovery</subject><subject>Retention</subject><subject>Retention basins</subject><subject>Runoff</subject><subject>Scirpus acutus</subject><subject>Scirpus validus</subject><subject>Species</subject><subject>Storm runoff</subject><subject>Storm sewers</subject><subject>Stormwater</subject><subject>Stormwater BMP</subject><subject>Stormwater management</subject><subject>Stormwater runoff</subject><subject>Surface water</subject><subject>Tissue</subject><subject>Typha latifolia</subject><subject>Uptake</subject><subject>Vegetation</subject><subject>Water pollution</subject><subject>Water quality</subject><issn>0925-8574</issn><issn>1872-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkctqHDEQRYWJwRPbn2AQZJNFuiOpn1qFYPwCE2_stdCjeqzJdKujUsc2_nlrMoZANlkUotCpS9W9hJxxVnLG26-bEmzYwrQuRW5Lzksm2AFZ8b4TRSul-EBWTIqm6JuuPiIfETeMsU40ckVef_gUwxomqidH58eAueKCdNSI1Oitnix8oRESTMmHPbbMSf8E6ieK_pnOmUkUZ7AekK5jeJr-fKUQxyedIFLjw1-B0dsYbMART8jhoLcIp-_vMXm4vLg_vy5u765uzr_fFrZmXSp6KQfjxDCAGZgDOTgBTjZcG2lYzyrnoNZM9JqbVgjrGmasMMxUAMZUsq2Oyee97hzDrwUwqdGjhW3eG8KCiveNrHd21Bn99A-6CUuc8naKy4p32ca2ylSzp_IliBEGNUc_6viiOFO7SNRGvUeidpEozlWOJM99289Bvva3h6gwe5YNdj6CTcoF_x-FN7eXm00</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Rycewicz-Borecki, Malgorzata</creator><creator>McLean, Joan E.</creator><creator>Dupont, R. Ryan</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QO</scope><scope>7SN</scope><scope>7T7</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H97</scope><scope>L.G</scope><scope>P64</scope></search><sort><creationdate>20170201</creationdate><title>Nitrogen and phosphorus mass balance, retention and uptake in six plant species grown in stormwater bioretention microcosms</title><author>Rycewicz-Borecki, Malgorzata ; McLean, Joan E. ; Dupont, R. Ryan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-899fbd2ffebf0de9fd2ed951ab9b0803dde4a028a1b622cd50bc2b0b3eebb3963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aquatic plants</topic><topic>Bioretention</topic><topic>Carex microptera</topic><topic>Carex praegracilis</topic><topic>Discharge</topic><topic>Feasibility studies</topic><topic>Freshwater plants</topic><topic>Greenhouse</topic><topic>Greenhouses</topic><topic>Marshes</topic><topic>Mass</topic><topic>Microcosms</topic><topic>Mineral nutrients</topic><topic>Nutrient balance</topic><topic>Nutrient retention</topic><topic>Nutrient uptake</topic><topic>Nutrients</topic><topic>Phosphorus</topic><topic>Phosphorus content</topic><topic>Phragmites australis</topic><topic>Plant species</topic><topic>Pollutant removal</topic><topic>Pollutants</topic><topic>Pollution abatement</topic><topic>Recovery</topic><topic>Retention</topic><topic>Retention basins</topic><topic>Runoff</topic><topic>Scirpus acutus</topic><topic>Scirpus validus</topic><topic>Species</topic><topic>Storm runoff</topic><topic>Storm sewers</topic><topic>Stormwater</topic><topic>Stormwater BMP</topic><topic>Stormwater management</topic><topic>Stormwater runoff</topic><topic>Surface water</topic><topic>Tissue</topic><topic>Typha latifolia</topic><topic>Uptake</topic><topic>Vegetation</topic><topic>Water pollution</topic><topic>Water quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rycewicz-Borecki, Malgorzata</creatorcontrib><creatorcontrib>McLean, Joan E.</creatorcontrib><creatorcontrib>Dupont, R. Ryan</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Ecological engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rycewicz-Borecki, Malgorzata</au><au>McLean, Joan E.</au><au>Dupont, R. Ryan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrogen and phosphorus mass balance, retention and uptake in six plant species grown in stormwater bioretention microcosms</atitle><jtitle>Ecological engineering</jtitle><date>2017-02-01</date><risdate>2017</risdate><volume>99</volume><spage>409</spage><epage>416</epage><pages>409-416</pages><issn>0925-8574</issn><eissn>1872-6992</eissn><abstract>•98% recovery of TP mass provides confidence in uptake and removal efficiency results.•Planted systems can optimize TP and TN removal efficiency from stormwater runoff.•Phr, Cap and Cam yield higher uptake of TN and TP than Typ, Scv, or Sca. Stormwater runoff contains high levels of nutrients, and is regulated by the Federal National Pollution Discharge Elimination System (NPDES) to protect surface water quality. Stormwater bioretention (BR) systems are increasingly used to address these regulations. Planted BR systems remove significantly more pollutants than unplanted systems, but most studies do not attempt to verify a pollutant mass balance and seldom evaluate differences in nutrient uptake among species. This greenhouse experiment proved that an overall 98% recovery of Total Phosphorus (TP) mass over the study period was feasible for six plant species, ensuring accuracy of measurements and analyses. Additionally, it was found that Phragmites australis, Carex praegracilis, and Carex microptera uptake significantly more TP and Total Nitrogen (TN) mass into harvestable tissue than Typha latifolia, Scirpus validus, and Scirpus acutus. These results confirm that species selection can optimize nutrient retention and recovery from stormwater and decrease pollutant discharge to surface waters.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ecoleng.2016.11.020</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-8574
ispartof Ecological engineering, 2017-02, Vol.99, p.409-416
issn 0925-8574
1872-6992
language eng
recordid cdi_proquest_miscellaneous_1859472594
source Elsevier ScienceDirect Journals Complete
subjects Aquatic plants
Bioretention
Carex microptera
Carex praegracilis
Discharge
Feasibility studies
Freshwater plants
Greenhouse
Greenhouses
Marshes
Mass
Microcosms
Mineral nutrients
Nutrient balance
Nutrient retention
Nutrient uptake
Nutrients
Phosphorus
Phosphorus content
Phragmites australis
Plant species
Pollutant removal
Pollutants
Pollution abatement
Recovery
Retention
Retention basins
Runoff
Scirpus acutus
Scirpus validus
Species
Storm runoff
Storm sewers
Stormwater
Stormwater BMP
Stormwater management
Stormwater runoff
Surface water
Tissue
Typha latifolia
Uptake
Vegetation
Water pollution
Water quality
title Nitrogen and phosphorus mass balance, retention and uptake in six plant species grown in stormwater bioretention microcosms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A35%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrogen%20and%20phosphorus%20mass%20balance,%20retention%20and%20uptake%20in%20six%20plant%20species%20grown%20in%20stormwater%20bioretention%20microcosms&rft.jtitle=Ecological%20engineering&rft.au=Rycewicz-Borecki,%20Malgorzata&rft.date=2017-02-01&rft.volume=99&rft.spage=409&rft.epage=416&rft.pages=409-416&rft.issn=0925-8574&rft.eissn=1872-6992&rft_id=info:doi/10.1016/j.ecoleng.2016.11.020&rft_dat=%3Cproquest_cross%3E1931709263%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1931709263&rft_id=info:pmid/&rft_els_id=S0925857416306425&rfr_iscdi=true