Glucagon‐like peptide‐1 drives energy metabolism on the synaptic highway
Glucagon‐like peptide‐1 (GLP‐1), a gut–brain hormone, coordinates energy balance in both peripheral organs and the central nervous system (CNS). In the pancreas, GLP‐1 facilitates insulin exocytosis or suppresses glucagon exocytosis via multiple pathways such as regulating KATP/Kv channels, N‐type C...
Gespeichert in:
Veröffentlicht in: | The FEBS journal 2016-12, Vol.283 (24), p.4413-4423 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4423 |
---|---|
container_issue | 24 |
container_start_page | 4413 |
container_title | The FEBS journal |
container_volume | 283 |
creator | Liu, Ji Pang, Zhiping P. |
description | Glucagon‐like peptide‐1 (GLP‐1), a gut–brain hormone, coordinates energy balance in both peripheral organs and the central nervous system (CNS). In the pancreas, GLP‐1 facilitates insulin exocytosis or suppresses glucagon exocytosis via multiple pathways such as regulating KATP/Kv channels, N‐type Ca2+ channels, and the readily releasable pool. In the CNS, GLP‐1 signaling regulates neuronal excitability in various brain regions, including neurons in the hippocampus, hypothalamus, and mesolimbic systems. GLP‐1 modulation on synaptic transmission includes both pre‐ and postsynaptic pathways that are either excitatory or inhibitory. Synaptic transmission conveys information flow in the brain and governs brain‐mediated behaviors. The study of GLP‐1 control of energy metabolism at a synaptic level may shed light on the role of GLP‐1 function in the brain. Various challenges remain including defining the mechanism of GLP‐1 release in the brain.
GLP‐1 regulates synaptic transmission in the central nervous system and thus contributes to mediating energy homeostasis. Here we review the effect of GLP‐1 on synaptic transmission in different regions including hippocampus, hypothalamus, brain stem, and vagal nervous. We attempt to provide mechanistic insights into how GLP‐1 functions in the central nervous system. |
doi_str_mv | 10.1111/febs.13785 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1859471134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4282417341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4965-3e770023540d12854b749ad60ca89e0f19895cbb41ae7b97bb798feb3a38f0b53</originalsourceid><addsrcrecordid>eNqN0U9LwzAYBvAgipvTix9ACl5E2EzSpGmOOrYpDDyo4K0k7duts_9sWkdvfgQ_o5_EzM4dPIi5JIEfD3nzIHRK8IjYdRWDNiPiCp_voT4RjA6Zx_393Zk999CRMSuMXc6kPEQ9KlzCKcV9NJ-lTagWRf75_pEmL-CUUNZJBPZKnKhK3sA4kEO1aJ0MaqWLNDGZU-ROvQTHtLmyOnSWyWK5Vu0xOohVauBkuw_Q03TyOL4dzu9nd-Pr-TBk0uNDF4TAmNrH4IhQnzMtmFSRh0PlS8Axkb7kodaMKBBaCq2F9O2QrnL9GGvuDtBFl1tWxWsDpg6yxISQpiqHojEB8blkghCX_YNSz5NCUs_S8190VTRVbgfZBGJqFdmoy06FVWFMBXFQVkmmqjYgONjUEWzqCL7rsPhsG9noDKId_fl_C0gH1kkK7R9RwXRy89CFfgHbDZVu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1850297916</pqid></control><display><type>article</type><title>Glucagon‐like peptide‐1 drives energy metabolism on the synaptic highway</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Wiley Free Archive</source><creator>Liu, Ji ; Pang, Zhiping P.</creator><creatorcontrib>Liu, Ji ; Pang, Zhiping P.</creatorcontrib><description>Glucagon‐like peptide‐1 (GLP‐1), a gut–brain hormone, coordinates energy balance in both peripheral organs and the central nervous system (CNS). In the pancreas, GLP‐1 facilitates insulin exocytosis or suppresses glucagon exocytosis via multiple pathways such as regulating KATP/Kv channels, N‐type Ca2+ channels, and the readily releasable pool. In the CNS, GLP‐1 signaling regulates neuronal excitability in various brain regions, including neurons in the hippocampus, hypothalamus, and mesolimbic systems. GLP‐1 modulation on synaptic transmission includes both pre‐ and postsynaptic pathways that are either excitatory or inhibitory. Synaptic transmission conveys information flow in the brain and governs brain‐mediated behaviors. The study of GLP‐1 control of energy metabolism at a synaptic level may shed light on the role of GLP‐1 function in the brain. Various challenges remain including defining the mechanism of GLP‐1 release in the brain.
GLP‐1 regulates synaptic transmission in the central nervous system and thus contributes to mediating energy homeostasis. Here we review the effect of GLP‐1 on synaptic transmission in different regions including hippocampus, hypothalamus, brain stem, and vagal nervous. We attempt to provide mechanistic insights into how GLP‐1 functions in the central nervous system.</description><identifier>ISSN: 1742-464X</identifier><identifier>EISSN: 1742-4658</identifier><identifier>DOI: 10.1111/febs.13785</identifier><identifier>PMID: 27315220</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Animals ; Brain - cytology ; Brain - drug effects ; Brain - metabolism ; Calcium - metabolism ; diabetes ; energy metabolism ; Energy Metabolism - drug effects ; Energy Metabolism - physiology ; Glucagon-Like Peptide 1 - pharmacology ; glucagon‐like peptide‐1 ; GPCR ; Hormones ; Humans ; Incretins - pharmacology ; Metabolism ; Models, Neurological ; Neurochemistry ; Neurons - drug effects ; Neurons - metabolism ; Neurons - physiology ; synaptic transmission ; Synaptic Transmission - drug effects ; Synaptic Transmission - physiology</subject><ispartof>The FEBS journal, 2016-12, Vol.283 (24), p.4413-4423</ispartof><rights>2016 Federation of European Biochemical Societies</rights><rights>2016 Federation of European Biochemical Societies.</rights><rights>Copyright © 2016 Federation of European Biochemical Societies</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4965-3e770023540d12854b749ad60ca89e0f19895cbb41ae7b97bb798feb3a38f0b53</citedby><cites>FETCH-LOGICAL-c4965-3e770023540d12854b749ad60ca89e0f19895cbb41ae7b97bb798feb3a38f0b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ffebs.13785$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ffebs.13785$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,1428,27905,27906,45555,45556,46390,46814</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27315220$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Ji</creatorcontrib><creatorcontrib>Pang, Zhiping P.</creatorcontrib><title>Glucagon‐like peptide‐1 drives energy metabolism on the synaptic highway</title><title>The FEBS journal</title><addtitle>FEBS J</addtitle><description>Glucagon‐like peptide‐1 (GLP‐1), a gut–brain hormone, coordinates energy balance in both peripheral organs and the central nervous system (CNS). In the pancreas, GLP‐1 facilitates insulin exocytosis or suppresses glucagon exocytosis via multiple pathways such as regulating KATP/Kv channels, N‐type Ca2+ channels, and the readily releasable pool. In the CNS, GLP‐1 signaling regulates neuronal excitability in various brain regions, including neurons in the hippocampus, hypothalamus, and mesolimbic systems. GLP‐1 modulation on synaptic transmission includes both pre‐ and postsynaptic pathways that are either excitatory or inhibitory. Synaptic transmission conveys information flow in the brain and governs brain‐mediated behaviors. The study of GLP‐1 control of energy metabolism at a synaptic level may shed light on the role of GLP‐1 function in the brain. Various challenges remain including defining the mechanism of GLP‐1 release in the brain.
GLP‐1 regulates synaptic transmission in the central nervous system and thus contributes to mediating energy homeostasis. Here we review the effect of GLP‐1 on synaptic transmission in different regions including hippocampus, hypothalamus, brain stem, and vagal nervous. We attempt to provide mechanistic insights into how GLP‐1 functions in the central nervous system.</description><subject>Animals</subject><subject>Brain - cytology</subject><subject>Brain - drug effects</subject><subject>Brain - metabolism</subject><subject>Calcium - metabolism</subject><subject>diabetes</subject><subject>energy metabolism</subject><subject>Energy Metabolism - drug effects</subject><subject>Energy Metabolism - physiology</subject><subject>Glucagon-Like Peptide 1 - pharmacology</subject><subject>glucagon‐like peptide‐1</subject><subject>GPCR</subject><subject>Hormones</subject><subject>Humans</subject><subject>Incretins - pharmacology</subject><subject>Metabolism</subject><subject>Models, Neurological</subject><subject>Neurochemistry</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Neurons - physiology</subject><subject>synaptic transmission</subject><subject>Synaptic Transmission - drug effects</subject><subject>Synaptic Transmission - physiology</subject><issn>1742-464X</issn><issn>1742-4658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0U9LwzAYBvAgipvTix9ACl5E2EzSpGmOOrYpDDyo4K0k7duts_9sWkdvfgQ_o5_EzM4dPIi5JIEfD3nzIHRK8IjYdRWDNiPiCp_voT4RjA6Zx_393Zk999CRMSuMXc6kPEQ9KlzCKcV9NJ-lTagWRf75_pEmL-CUUNZJBPZKnKhK3sA4kEO1aJ0MaqWLNDGZU-ROvQTHtLmyOnSWyWK5Vu0xOohVauBkuw_Q03TyOL4dzu9nd-Pr-TBk0uNDF4TAmNrH4IhQnzMtmFSRh0PlS8Axkb7kodaMKBBaCq2F9O2QrnL9GGvuDtBFl1tWxWsDpg6yxISQpiqHojEB8blkghCX_YNSz5NCUs_S8190VTRVbgfZBGJqFdmoy06FVWFMBXFQVkmmqjYgONjUEWzqCL7rsPhsG9noDKId_fl_C0gH1kkK7R9RwXRy89CFfgHbDZVu</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Liu, Ji</creator><creator>Pang, Zhiping P.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201612</creationdate><title>Glucagon‐like peptide‐1 drives energy metabolism on the synaptic highway</title><author>Liu, Ji ; Pang, Zhiping P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4965-3e770023540d12854b749ad60ca89e0f19895cbb41ae7b97bb798feb3a38f0b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Brain - cytology</topic><topic>Brain - drug effects</topic><topic>Brain - metabolism</topic><topic>Calcium - metabolism</topic><topic>diabetes</topic><topic>energy metabolism</topic><topic>Energy Metabolism - drug effects</topic><topic>Energy Metabolism - physiology</topic><topic>Glucagon-Like Peptide 1 - pharmacology</topic><topic>glucagon‐like peptide‐1</topic><topic>GPCR</topic><topic>Hormones</topic><topic>Humans</topic><topic>Incretins - pharmacology</topic><topic>Metabolism</topic><topic>Models, Neurological</topic><topic>Neurochemistry</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Neurons - physiology</topic><topic>synaptic transmission</topic><topic>Synaptic Transmission - drug effects</topic><topic>Synaptic Transmission - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Ji</creatorcontrib><creatorcontrib>Pang, Zhiping P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The FEBS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Ji</au><au>Pang, Zhiping P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glucagon‐like peptide‐1 drives energy metabolism on the synaptic highway</atitle><jtitle>The FEBS journal</jtitle><addtitle>FEBS J</addtitle><date>2016-12</date><risdate>2016</risdate><volume>283</volume><issue>24</issue><spage>4413</spage><epage>4423</epage><pages>4413-4423</pages><issn>1742-464X</issn><eissn>1742-4658</eissn><abstract>Glucagon‐like peptide‐1 (GLP‐1), a gut–brain hormone, coordinates energy balance in both peripheral organs and the central nervous system (CNS). In the pancreas, GLP‐1 facilitates insulin exocytosis or suppresses glucagon exocytosis via multiple pathways such as regulating KATP/Kv channels, N‐type Ca2+ channels, and the readily releasable pool. In the CNS, GLP‐1 signaling regulates neuronal excitability in various brain regions, including neurons in the hippocampus, hypothalamus, and mesolimbic systems. GLP‐1 modulation on synaptic transmission includes both pre‐ and postsynaptic pathways that are either excitatory or inhibitory. Synaptic transmission conveys information flow in the brain and governs brain‐mediated behaviors. The study of GLP‐1 control of energy metabolism at a synaptic level may shed light on the role of GLP‐1 function in the brain. Various challenges remain including defining the mechanism of GLP‐1 release in the brain.
GLP‐1 regulates synaptic transmission in the central nervous system and thus contributes to mediating energy homeostasis. Here we review the effect of GLP‐1 on synaptic transmission in different regions including hippocampus, hypothalamus, brain stem, and vagal nervous. We attempt to provide mechanistic insights into how GLP‐1 functions in the central nervous system.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>27315220</pmid><doi>10.1111/febs.13785</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-464X |
ispartof | The FEBS journal, 2016-12, Vol.283 (24), p.4413-4423 |
issn | 1742-464X 1742-4658 |
language | eng |
recordid | cdi_proquest_miscellaneous_1859471134 |
source | Wiley-Blackwell Journals; MEDLINE; Full-Text Journals in Chemistry (Open access); Wiley Free Archive |
subjects | Animals Brain - cytology Brain - drug effects Brain - metabolism Calcium - metabolism diabetes energy metabolism Energy Metabolism - drug effects Energy Metabolism - physiology Glucagon-Like Peptide 1 - pharmacology glucagon‐like peptide‐1 GPCR Hormones Humans Incretins - pharmacology Metabolism Models, Neurological Neurochemistry Neurons - drug effects Neurons - metabolism Neurons - physiology synaptic transmission Synaptic Transmission - drug effects Synaptic Transmission - physiology |
title | Glucagon‐like peptide‐1 drives energy metabolism on the synaptic highway |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A46%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glucagon%E2%80%90like%20peptide%E2%80%901%20drives%20energy%20metabolism%20on%20the%20synaptic%20highway&rft.jtitle=The%20FEBS%20journal&rft.au=Liu,%20Ji&rft.date=2016-12&rft.volume=283&rft.issue=24&rft.spage=4413&rft.epage=4423&rft.pages=4413-4423&rft.issn=1742-464X&rft.eissn=1742-4658&rft_id=info:doi/10.1111/febs.13785&rft_dat=%3Cproquest_cross%3E4282417341%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1850297916&rft_id=info:pmid/27315220&rfr_iscdi=true |