Characterization of finite-time Lyapunov exponents and vectors in two-dimensional turbulence
This paper discusses the application of Lyapunov theory in chaotic systems to the dynamics of tracer gradients in two-dimensional flows. The Lyapunov theory indicates that more attention should be given to the Lyapunov vector orientation. Moreover, the properties of Lyapunov vectors and exponents ar...
Gespeichert in:
Veröffentlicht in: | Chaos (Woodbury, N.Y.) N.Y.), 2002-09, Vol.12 (3), p.688-698 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 698 |
---|---|
container_issue | 3 |
container_start_page | 688 |
container_title | Chaos (Woodbury, N.Y.) |
container_volume | 12 |
creator | Lapeyre, Guillaume |
description | This paper discusses the application of Lyapunov theory in chaotic systems to the dynamics of tracer gradients in two-dimensional flows. The Lyapunov theory indicates that more attention should be given to the Lyapunov vector orientation. Moreover, the properties of Lyapunov vectors and exponents are explained in light of recent results on tracer gradients dynamics. Differences between the different Lyapunov vectors can be interpreted in terms of competition between the effects of effective rotation and strain. Also, the differences between backward and forward vectors give information on the local reversibility of the tracer gradient dynamics. A numerical simulation of two-dimensional turbulence serves to highlight these points and the spatial distribution of finite time Lyapunov exponents is also discussed in relation to stirring properties. |
doi_str_mv | 10.1063/1.1499395 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1859408031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859408031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-33f5a47652b9b62f99887f17357d0b5caee09e6719d20827730cde27f716214f3</originalsourceid><addsrcrecordid>eNp9kMGKFDEQhoMo7rp68AUkRxV6rSSdTue4DOoKA170JoR0usJGepI2Sc-6Pr09zuCc9FRF8f0fxU_ISwbXDDrxjl2zVmuh5SNyyaDXjep6_viwy7ZhEuCCPCvlOwAwLuRTcsG4UlpqdUm-be5stq5iDr9sDSnS5KkPMVRsatgh3T7YeYlpT_HnnCLGWqiNI92jqykXGiKt96kZVzSWNW4nWpc8LBNGh8_JE2-ngi9O84p8_fD-y-a22X7--Glzs22c6FVthPDStqqTfNBDx73Wfa88U0KqEQbpLCJo7BTTI4d-fV2AG5Err1jHWevFFXlz9N7Zycw57Gx-MMkGc3uzNYcbgGDARbtnK_v6yM45_ViwVLMLxeE02YhpKYb1UrfQr4Gz1uVUSkb_183AHIo3zJyKX9lXJ-0y7HA8k6emV-DtESgu1D9N_9f2T3if8hk08-jFb-d8mP4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859408031</pqid></control><display><type>article</type><title>Characterization of finite-time Lyapunov exponents and vectors in two-dimensional turbulence</title><source>American Institute of Physics</source><source>AIP_美国物理联合会期刊回溯(NSTL购买)</source><creator>Lapeyre, Guillaume</creator><creatorcontrib>Lapeyre, Guillaume</creatorcontrib><description>This paper discusses the application of Lyapunov theory in chaotic systems to the dynamics of tracer gradients in two-dimensional flows. The Lyapunov theory indicates that more attention should be given to the Lyapunov vector orientation. Moreover, the properties of Lyapunov vectors and exponents are explained in light of recent results on tracer gradients dynamics. Differences between the different Lyapunov vectors can be interpreted in terms of competition between the effects of effective rotation and strain. Also, the differences between backward and forward vectors give information on the local reversibility of the tracer gradient dynamics. A numerical simulation of two-dimensional turbulence serves to highlight these points and the spatial distribution of finite time Lyapunov exponents is also discussed in relation to stirring properties.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.1499395</identifier><identifier>PMID: 12779597</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Earth Sciences ; Oceanography ; Sciences of the Universe</subject><ispartof>Chaos (Woodbury, N.Y.), 2002-09, Vol.12 (3), p.688-698</ispartof><rights>American Institute of Physics</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-33f5a47652b9b62f99887f17357d0b5caee09e6719d20827730cde27f716214f3</citedby><cites>FETCH-LOGICAL-c387t-33f5a47652b9b62f99887f17357d0b5caee09e6719d20827730cde27f716214f3</cites><orcidid>0000-0001-8187-8971</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,790,881,1553,4497,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12779597$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00310234$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lapeyre, Guillaume</creatorcontrib><title>Characterization of finite-time Lyapunov exponents and vectors in two-dimensional turbulence</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>This paper discusses the application of Lyapunov theory in chaotic systems to the dynamics of tracer gradients in two-dimensional flows. The Lyapunov theory indicates that more attention should be given to the Lyapunov vector orientation. Moreover, the properties of Lyapunov vectors and exponents are explained in light of recent results on tracer gradients dynamics. Differences between the different Lyapunov vectors can be interpreted in terms of competition between the effects of effective rotation and strain. Also, the differences between backward and forward vectors give information on the local reversibility of the tracer gradient dynamics. A numerical simulation of two-dimensional turbulence serves to highlight these points and the spatial distribution of finite time Lyapunov exponents is also discussed in relation to stirring properties.</description><subject>Earth Sciences</subject><subject>Oceanography</subject><subject>Sciences of the Universe</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp9kMGKFDEQhoMo7rp68AUkRxV6rSSdTue4DOoKA170JoR0usJGepI2Sc-6Pr09zuCc9FRF8f0fxU_ISwbXDDrxjl2zVmuh5SNyyaDXjep6_viwy7ZhEuCCPCvlOwAwLuRTcsG4UlpqdUm-be5stq5iDr9sDSnS5KkPMVRsatgh3T7YeYlpT_HnnCLGWqiNI92jqykXGiKt96kZVzSWNW4nWpc8LBNGh8_JE2-ngi9O84p8_fD-y-a22X7--Glzs22c6FVthPDStqqTfNBDx73Wfa88U0KqEQbpLCJo7BTTI4d-fV2AG5Err1jHWevFFXlz9N7Zycw57Gx-MMkGc3uzNYcbgGDARbtnK_v6yM45_ViwVLMLxeE02YhpKYb1UrfQr4Gz1uVUSkb_183AHIo3zJyKX9lXJ-0y7HA8k6emV-DtESgu1D9N_9f2T3if8hk08-jFb-d8mP4</recordid><startdate>20020901</startdate><enddate>20020901</enddate><creator>Lapeyre, Guillaume</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8187-8971</orcidid></search><sort><creationdate>20020901</creationdate><title>Characterization of finite-time Lyapunov exponents and vectors in two-dimensional turbulence</title><author>Lapeyre, Guillaume</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-33f5a47652b9b62f99887f17357d0b5caee09e6719d20827730cde27f716214f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Earth Sciences</topic><topic>Oceanography</topic><topic>Sciences of the Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lapeyre, Guillaume</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lapeyre, Guillaume</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of finite-time Lyapunov exponents and vectors in two-dimensional turbulence</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2002-09-01</date><risdate>2002</risdate><volume>12</volume><issue>3</issue><spage>688</spage><epage>698</epage><pages>688-698</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>This paper discusses the application of Lyapunov theory in chaotic systems to the dynamics of tracer gradients in two-dimensional flows. The Lyapunov theory indicates that more attention should be given to the Lyapunov vector orientation. Moreover, the properties of Lyapunov vectors and exponents are explained in light of recent results on tracer gradients dynamics. Differences between the different Lyapunov vectors can be interpreted in terms of competition between the effects of effective rotation and strain. Also, the differences between backward and forward vectors give information on the local reversibility of the tracer gradient dynamics. A numerical simulation of two-dimensional turbulence serves to highlight these points and the spatial distribution of finite time Lyapunov exponents is also discussed in relation to stirring properties.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>12779597</pmid><doi>10.1063/1.1499395</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8187-8971</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-1500 |
ispartof | Chaos (Woodbury, N.Y.), 2002-09, Vol.12 (3), p.688-698 |
issn | 1054-1500 1089-7682 |
language | eng |
recordid | cdi_proquest_miscellaneous_1859408031 |
source | American Institute of Physics; AIP_美国物理联合会期刊回溯(NSTL购买) |
subjects | Earth Sciences Oceanography Sciences of the Universe |
title | Characterization of finite-time Lyapunov exponents and vectors in two-dimensional turbulence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A30%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20finite-time%20Lyapunov%20exponents%20and%20vectors%20in%20two-dimensional%20turbulence&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Lapeyre,%20Guillaume&rft.date=2002-09-01&rft.volume=12&rft.issue=3&rft.spage=688&rft.epage=698&rft.pages=688-698&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.1499395&rft_dat=%3Cproquest_cross%3E1859408031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859408031&rft_id=info:pmid/12779597&rfr_iscdi=true |