Characterization of finite-time Lyapunov exponents and vectors in two-dimensional turbulence

This paper discusses the application of Lyapunov theory in chaotic systems to the dynamics of tracer gradients in two-dimensional flows. The Lyapunov theory indicates that more attention should be given to the Lyapunov vector orientation. Moreover, the properties of Lyapunov vectors and exponents ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2002-09, Vol.12 (3), p.688-698
1. Verfasser: Lapeyre, Guillaume
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 698
container_issue 3
container_start_page 688
container_title Chaos (Woodbury, N.Y.)
container_volume 12
creator Lapeyre, Guillaume
description This paper discusses the application of Lyapunov theory in chaotic systems to the dynamics of tracer gradients in two-dimensional flows. The Lyapunov theory indicates that more attention should be given to the Lyapunov vector orientation. Moreover, the properties of Lyapunov vectors and exponents are explained in light of recent results on tracer gradients dynamics. Differences between the different Lyapunov vectors can be interpreted in terms of competition between the effects of effective rotation and strain. Also, the differences between backward and forward vectors give information on the local reversibility of the tracer gradient dynamics. A numerical simulation of two-dimensional turbulence serves to highlight these points and the spatial distribution of finite time Lyapunov exponents is also discussed in relation to stirring properties.
doi_str_mv 10.1063/1.1499395
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1859408031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859408031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-33f5a47652b9b62f99887f17357d0b5caee09e6719d20827730cde27f716214f3</originalsourceid><addsrcrecordid>eNp9kMGKFDEQhoMo7rp68AUkRxV6rSSdTue4DOoKA170JoR0usJGepI2Sc-6Pr09zuCc9FRF8f0fxU_ISwbXDDrxjl2zVmuh5SNyyaDXjep6_viwy7ZhEuCCPCvlOwAwLuRTcsG4UlpqdUm-be5stq5iDr9sDSnS5KkPMVRsatgh3T7YeYlpT_HnnCLGWqiNI92jqykXGiKt96kZVzSWNW4nWpc8LBNGh8_JE2-ngi9O84p8_fD-y-a22X7--Glzs22c6FVthPDStqqTfNBDx73Wfa88U0KqEQbpLCJo7BTTI4d-fV2AG5Err1jHWevFFXlz9N7Zycw57Gx-MMkGc3uzNYcbgGDARbtnK_v6yM45_ViwVLMLxeE02YhpKYb1UrfQr4Gz1uVUSkb_183AHIo3zJyKX9lXJ-0y7HA8k6emV-DtESgu1D9N_9f2T3if8hk08-jFb-d8mP4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859408031</pqid></control><display><type>article</type><title>Characterization of finite-time Lyapunov exponents and vectors in two-dimensional turbulence</title><source>American Institute of Physics</source><source>AIP_美国物理联合会期刊回溯(NSTL购买)</source><creator>Lapeyre, Guillaume</creator><creatorcontrib>Lapeyre, Guillaume</creatorcontrib><description>This paper discusses the application of Lyapunov theory in chaotic systems to the dynamics of tracer gradients in two-dimensional flows. The Lyapunov theory indicates that more attention should be given to the Lyapunov vector orientation. Moreover, the properties of Lyapunov vectors and exponents are explained in light of recent results on tracer gradients dynamics. Differences between the different Lyapunov vectors can be interpreted in terms of competition between the effects of effective rotation and strain. Also, the differences between backward and forward vectors give information on the local reversibility of the tracer gradient dynamics. A numerical simulation of two-dimensional turbulence serves to highlight these points and the spatial distribution of finite time Lyapunov exponents is also discussed in relation to stirring properties.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.1499395</identifier><identifier>PMID: 12779597</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Earth Sciences ; Oceanography ; Sciences of the Universe</subject><ispartof>Chaos (Woodbury, N.Y.), 2002-09, Vol.12 (3), p.688-698</ispartof><rights>American Institute of Physics</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-33f5a47652b9b62f99887f17357d0b5caee09e6719d20827730cde27f716214f3</citedby><cites>FETCH-LOGICAL-c387t-33f5a47652b9b62f99887f17357d0b5caee09e6719d20827730cde27f716214f3</cites><orcidid>0000-0001-8187-8971</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,790,881,1553,4497,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12779597$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00310234$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lapeyre, Guillaume</creatorcontrib><title>Characterization of finite-time Lyapunov exponents and vectors in two-dimensional turbulence</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>This paper discusses the application of Lyapunov theory in chaotic systems to the dynamics of tracer gradients in two-dimensional flows. The Lyapunov theory indicates that more attention should be given to the Lyapunov vector orientation. Moreover, the properties of Lyapunov vectors and exponents are explained in light of recent results on tracer gradients dynamics. Differences between the different Lyapunov vectors can be interpreted in terms of competition between the effects of effective rotation and strain. Also, the differences between backward and forward vectors give information on the local reversibility of the tracer gradient dynamics. A numerical simulation of two-dimensional turbulence serves to highlight these points and the spatial distribution of finite time Lyapunov exponents is also discussed in relation to stirring properties.</description><subject>Earth Sciences</subject><subject>Oceanography</subject><subject>Sciences of the Universe</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp9kMGKFDEQhoMo7rp68AUkRxV6rSSdTue4DOoKA170JoR0usJGepI2Sc-6Pr09zuCc9FRF8f0fxU_ISwbXDDrxjl2zVmuh5SNyyaDXjep6_viwy7ZhEuCCPCvlOwAwLuRTcsG4UlpqdUm-be5stq5iDr9sDSnS5KkPMVRsatgh3T7YeYlpT_HnnCLGWqiNI92jqykXGiKt96kZVzSWNW4nWpc8LBNGh8_JE2-ngi9O84p8_fD-y-a22X7--Glzs22c6FVthPDStqqTfNBDx73Wfa88U0KqEQbpLCJo7BTTI4d-fV2AG5Err1jHWevFFXlz9N7Zycw57Gx-MMkGc3uzNYcbgGDARbtnK_v6yM45_ViwVLMLxeE02YhpKYb1UrfQr4Gz1uVUSkb_183AHIo3zJyKX9lXJ-0y7HA8k6emV-DtESgu1D9N_9f2T3if8hk08-jFb-d8mP4</recordid><startdate>20020901</startdate><enddate>20020901</enddate><creator>Lapeyre, Guillaume</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8187-8971</orcidid></search><sort><creationdate>20020901</creationdate><title>Characterization of finite-time Lyapunov exponents and vectors in two-dimensional turbulence</title><author>Lapeyre, Guillaume</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-33f5a47652b9b62f99887f17357d0b5caee09e6719d20827730cde27f716214f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Earth Sciences</topic><topic>Oceanography</topic><topic>Sciences of the Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lapeyre, Guillaume</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lapeyre, Guillaume</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of finite-time Lyapunov exponents and vectors in two-dimensional turbulence</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2002-09-01</date><risdate>2002</risdate><volume>12</volume><issue>3</issue><spage>688</spage><epage>698</epage><pages>688-698</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>This paper discusses the application of Lyapunov theory in chaotic systems to the dynamics of tracer gradients in two-dimensional flows. The Lyapunov theory indicates that more attention should be given to the Lyapunov vector orientation. Moreover, the properties of Lyapunov vectors and exponents are explained in light of recent results on tracer gradients dynamics. Differences between the different Lyapunov vectors can be interpreted in terms of competition between the effects of effective rotation and strain. Also, the differences between backward and forward vectors give information on the local reversibility of the tracer gradient dynamics. A numerical simulation of two-dimensional turbulence serves to highlight these points and the spatial distribution of finite time Lyapunov exponents is also discussed in relation to stirring properties.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>12779597</pmid><doi>10.1063/1.1499395</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8187-8971</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2002-09, Vol.12 (3), p.688-698
issn 1054-1500
1089-7682
language eng
recordid cdi_proquest_miscellaneous_1859408031
source American Institute of Physics; AIP_美国物理联合会期刊回溯(NSTL购买)
subjects Earth Sciences
Oceanography
Sciences of the Universe
title Characterization of finite-time Lyapunov exponents and vectors in two-dimensional turbulence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A30%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20finite-time%20Lyapunov%20exponents%20and%20vectors%20in%20two-dimensional%20turbulence&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Lapeyre,%20Guillaume&rft.date=2002-09-01&rft.volume=12&rft.issue=3&rft.spage=688&rft.epage=698&rft.pages=688-698&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.1499395&rft_dat=%3Cproquest_cross%3E1859408031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859408031&rft_id=info:pmid/12779597&rfr_iscdi=true