Periodically kicked hard oscillators

A model of a hard oscillator with analytic solution is presented. Its behavior under periodic kicking, for which a closed form stroboscopic map can be obtained, is studied. It is shown that the general structure of such an oscillator includes four distinct regions; the outer two regions correspond t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 1993-01, Vol.3 (1), p.51-62
Hauptverfasser: Cecchi, G. A., Gonzalez, D. L., Magnasco, M. O., Mindlin, G. B., Piro, O., Santillan, A. J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 62
container_issue 1
container_start_page 51
container_title Chaos (Woodbury, N.Y.)
container_volume 3
creator Cecchi, G. A.
Gonzalez, D. L.
Magnasco, M. O.
Mindlin, G. B.
Piro, O.
Santillan, A. J.
description A model of a hard oscillator with analytic solution is presented. Its behavior under periodic kicking, for which a closed form stroboscopic map can be obtained, is studied. It is shown that the general structure of such an oscillator includes four distinct regions; the outer two regions correspond to very small or very large amplitude of the external force and match the corresponding regions in soft oscillators (invertible degree one and degree zero circle maps, respectively). There are two new regions for intermediate amplitude of the forcing. Region 3 corresponds to moderate high forcing, and is intrinsic to hard oscillators; it is characterized by discontinuous circle maps with a flat segment. Region 2 (low moderate forcing) has a certain resemblance to a similar region in soft oscillators (noninvertible degree one circle maps); however, the limit set of the dynamics in this region is not a circle, but a branched manifold, obtained as the tangent union of a circle and an interval; the topological structure of this object is generated by the finite size of the repelling set, and is therefore also intrinsic to hard oscillators.
doi_str_mv 10.1063/1.165978
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_miscellaneous_1859407264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859407264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-11870f7baff45a4558aa16d6e756a8d6e359698ce9313fe4875ff31c1a56bc3d3</originalsourceid><addsrcrecordid>eNp9kMtKQzEQhoMotlbBJ5AuXOji1MzJfSnFGxR0oeuQ5oKxp01NTgt9e09psStd_TPw8TPzIXQJeASYkzsYAWdKyCPUByxVJbisj7czoxUwjHvorJQvjDHUhJ2iHtRCdgvto-s3n2Ny0Zqm2Qxn0c68G36a7Iap2Ng0pk25nKOTYJriL_Y5QB-PD-_j52ry-vQyvp9UllDVVgBS4CCmJgTKDGVMGgPccS8YN7JLwhRX0npFgARPpWAhELBgGJ9a4sgA3ex6lzl9r3xp9TwW67srFj6tigbJFMWi5vSA2pxKyT7oZY5zkzcasN460aB3Tjr0at-6ms69O4B7CR1wuwO6j1vTxrT4r-xPdp3yL6eXLpAfHzN1pg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859407264</pqid></control><display><type>article</type><title>Periodically kicked hard oscillators</title><source>AIP Digital Archive</source><creator>Cecchi, G. A. ; Gonzalez, D. L. ; Magnasco, M. O. ; Mindlin, G. B. ; Piro, O. ; Santillan, A. J.</creator><creatorcontrib>Cecchi, G. A. ; Gonzalez, D. L. ; Magnasco, M. O. ; Mindlin, G. B. ; Piro, O. ; Santillan, A. J.</creatorcontrib><description>A model of a hard oscillator with analytic solution is presented. Its behavior under periodic kicking, for which a closed form stroboscopic map can be obtained, is studied. It is shown that the general structure of such an oscillator includes four distinct regions; the outer two regions correspond to very small or very large amplitude of the external force and match the corresponding regions in soft oscillators (invertible degree one and degree zero circle maps, respectively). There are two new regions for intermediate amplitude of the forcing. Region 3 corresponds to moderate high forcing, and is intrinsic to hard oscillators; it is characterized by discontinuous circle maps with a flat segment. Region 2 (low moderate forcing) has a certain resemblance to a similar region in soft oscillators (noninvertible degree one circle maps); however, the limit set of the dynamics in this region is not a circle, but a branched manifold, obtained as the tangent union of a circle and an interval; the topological structure of this object is generated by the finite size of the repelling set, and is therefore also intrinsic to hard oscillators.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.165978</identifier><identifier>PMID: 12780014</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States</publisher><ispartof>Chaos (Woodbury, N.Y.), 1993-01, Vol.3 (1), p.51-62</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-11870f7baff45a4558aa16d6e756a8d6e359698ce9313fe4875ff31c1a56bc3d3</citedby><cites>FETCH-LOGICAL-c349t-11870f7baff45a4558aa16d6e756a8d6e359698ce9313fe4875ff31c1a56bc3d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1553,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12780014$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cecchi, G. A.</creatorcontrib><creatorcontrib>Gonzalez, D. L.</creatorcontrib><creatorcontrib>Magnasco, M. O.</creatorcontrib><creatorcontrib>Mindlin, G. B.</creatorcontrib><creatorcontrib>Piro, O.</creatorcontrib><creatorcontrib>Santillan, A. J.</creatorcontrib><title>Periodically kicked hard oscillators</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>A model of a hard oscillator with analytic solution is presented. Its behavior under periodic kicking, for which a closed form stroboscopic map can be obtained, is studied. It is shown that the general structure of such an oscillator includes four distinct regions; the outer two regions correspond to very small or very large amplitude of the external force and match the corresponding regions in soft oscillators (invertible degree one and degree zero circle maps, respectively). There are two new regions for intermediate amplitude of the forcing. Region 3 corresponds to moderate high forcing, and is intrinsic to hard oscillators; it is characterized by discontinuous circle maps with a flat segment. Region 2 (low moderate forcing) has a certain resemblance to a similar region in soft oscillators (noninvertible degree one circle maps); however, the limit set of the dynamics in this region is not a circle, but a branched manifold, obtained as the tangent union of a circle and an interval; the topological structure of this object is generated by the finite size of the repelling set, and is therefore also intrinsic to hard oscillators.</description><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKQzEQhoMotlbBJ5AuXOji1MzJfSnFGxR0oeuQ5oKxp01NTgt9e09psStd_TPw8TPzIXQJeASYkzsYAWdKyCPUByxVJbisj7czoxUwjHvorJQvjDHUhJ2iHtRCdgvto-s3n2Ny0Zqm2Qxn0c68G36a7Iap2Ng0pk25nKOTYJriL_Y5QB-PD-_j52ry-vQyvp9UllDVVgBS4CCmJgTKDGVMGgPccS8YN7JLwhRX0npFgARPpWAhELBgGJ9a4sgA3ex6lzl9r3xp9TwW67srFj6tigbJFMWi5vSA2pxKyT7oZY5zkzcasN460aB3Tjr0at-6ms69O4B7CR1wuwO6j1vTxrT4r-xPdp3yL6eXLpAfHzN1pg</recordid><startdate>199301</startdate><enddate>199301</enddate><creator>Cecchi, G. A.</creator><creator>Gonzalez, D. L.</creator><creator>Magnasco, M. O.</creator><creator>Mindlin, G. B.</creator><creator>Piro, O.</creator><creator>Santillan, A. J.</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>199301</creationdate><title>Periodically kicked hard oscillators</title><author>Cecchi, G. A. ; Gonzalez, D. L. ; Magnasco, M. O. ; Mindlin, G. B. ; Piro, O. ; Santillan, A. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-11870f7baff45a4558aa16d6e756a8d6e359698ce9313fe4875ff31c1a56bc3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cecchi, G. A.</creatorcontrib><creatorcontrib>Gonzalez, D. L.</creatorcontrib><creatorcontrib>Magnasco, M. O.</creatorcontrib><creatorcontrib>Mindlin, G. B.</creatorcontrib><creatorcontrib>Piro, O.</creatorcontrib><creatorcontrib>Santillan, A. J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cecchi, G. A.</au><au>Gonzalez, D. L.</au><au>Magnasco, M. O.</au><au>Mindlin, G. B.</au><au>Piro, O.</au><au>Santillan, A. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Periodically kicked hard oscillators</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>1993-01</date><risdate>1993</risdate><volume>3</volume><issue>1</issue><spage>51</spage><epage>62</epage><pages>51-62</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>A model of a hard oscillator with analytic solution is presented. Its behavior under periodic kicking, for which a closed form stroboscopic map can be obtained, is studied. It is shown that the general structure of such an oscillator includes four distinct regions; the outer two regions correspond to very small or very large amplitude of the external force and match the corresponding regions in soft oscillators (invertible degree one and degree zero circle maps, respectively). There are two new regions for intermediate amplitude of the forcing. Region 3 corresponds to moderate high forcing, and is intrinsic to hard oscillators; it is characterized by discontinuous circle maps with a flat segment. Region 2 (low moderate forcing) has a certain resemblance to a similar region in soft oscillators (noninvertible degree one circle maps); however, the limit set of the dynamics in this region is not a circle, but a branched manifold, obtained as the tangent union of a circle and an interval; the topological structure of this object is generated by the finite size of the repelling set, and is therefore also intrinsic to hard oscillators.</abstract><cop>United States</cop><pmid>12780014</pmid><doi>10.1063/1.165978</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 1993-01, Vol.3 (1), p.51-62
issn 1054-1500
1089-7682
language eng
recordid cdi_proquest_miscellaneous_1859407264
source AIP Digital Archive
title Periodically kicked hard oscillators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A53%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Periodically%20kicked%20hard%20oscillators&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Cecchi,%20G.%20A.&rft.date=1993-01&rft.volume=3&rft.issue=1&rft.spage=51&rft.epage=62&rft.pages=51-62&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.165978&rft_dat=%3Cproquest_scita%3E1859407264%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859407264&rft_id=info:pmid/12780014&rfr_iscdi=true