Perspectives and problems in motor learning
Movement provides the only means we have to interact with both the world and other people. Such interactions can be hard-wired or learned through experience with the environment. Learning allows us to adapt to a changing physical environment as well as to novel conventions developed by society. Here...
Gespeichert in:
Veröffentlicht in: | Trends in Cognitive Sciences 2001-11, Vol.5 (11), p.487-494 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 494 |
---|---|
container_issue | 11 |
container_start_page | 487 |
container_title | Trends in Cognitive Sciences |
container_volume | 5 |
creator | Wolpert, Daniel M Ghahramani, Zoubin Flanagan, J.Randall |
description | Movement provides the only means we have to interact with both the world and other people. Such interactions can be hard-wired or learned through experience with the environment. Learning allows us to adapt to a changing physical environment as well as to novel conventions developed by society. Here we review motor learning from a computational perspective, exploring the need for motor learning, what is learned and how it is represented, and the mechanisms of learning. We relate these computational issues to empirical studies on motor learning in humans. |
doi_str_mv | 10.1016/S1364-6613(00)01773-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1859365469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1364661300017733</els_id><sourcerecordid>1859365469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-ee4cbd6a73b3401b009011ed27350f0e4b1bc76e124871893e93169565e4e3b3</originalsourceid><addsrcrecordid>eNqFkEtLAzEQx4MotlY_grLHiqzONNlk9yRSfEFBwR68hU12KpF91GRb8NubPsSjp5nD7z-PH2PnCNcIKG_ekEuRSol8DHAJqBRP-QEbYq6KlIN6P4z9LzJgJyF8AmCmlDxmA0SZC5HjkF29kg9Lsr1bU0jKtkqWvjM1NSFxbdJ0feeTmkrfuvbjlB0tyjrQ2b6O2Pzhfj59Smcvj8_Tu1lq48g-JRLWVLJU3HABaAAKQKRqongGCyBh0FglCSciV5gXnAqOsshkRoJiZsTGu7Hxkq8VhV43Lliq67KlbhU05lnBZSZkEdFsh1rfheBpoZfeNaX_1gh6o0lvNemNAw2gt5o0j7mL_YqVaaj6S-29ROB2B1D8c-3I62AdtZYq56MsXXXunxU_RMF1Ww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859365469</pqid></control><display><type>article</type><title>Perspectives and problems in motor learning</title><source>Elsevier ScienceDirect Journals</source><creator>Wolpert, Daniel M ; Ghahramani, Zoubin ; Flanagan, J.Randall</creator><creatorcontrib>Wolpert, Daniel M ; Ghahramani, Zoubin ; Flanagan, J.Randall</creatorcontrib><description>Movement provides the only means we have to interact with both the world and other people. Such interactions can be hard-wired or learned through experience with the environment. Learning allows us to adapt to a changing physical environment as well as to novel conventions developed by society. Here we review motor learning from a computational perspective, exploring the need for motor learning, what is learned and how it is represented, and the mechanisms of learning. We relate these computational issues to empirical studies on motor learning in humans.</description><identifier>ISSN: 1364-6613</identifier><identifier>EISSN: 1879-307X</identifier><identifier>DOI: 10.1016/S1364-6613(00)01773-3</identifier><identifier>PMID: 11684481</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>innate behaviour ; inverse model ; movement ; reinforcement learning ; sensory inputs ; supervised learning</subject><ispartof>Trends in Cognitive Sciences, 2001-11, Vol.5 (11), p.487-494</ispartof><rights>2001 Elsevier Science Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-ee4cbd6a73b3401b009011ed27350f0e4b1bc76e124871893e93169565e4e3b3</citedby><cites>FETCH-LOGICAL-c481t-ee4cbd6a73b3401b009011ed27350f0e4b1bc76e124871893e93169565e4e3b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1364661300017733$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>313,314,776,780,788,3537,27899,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11684481$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wolpert, Daniel M</creatorcontrib><creatorcontrib>Ghahramani, Zoubin</creatorcontrib><creatorcontrib>Flanagan, J.Randall</creatorcontrib><title>Perspectives and problems in motor learning</title><title>Trends in Cognitive Sciences</title><addtitle>Trends Cogn Sci</addtitle><description>Movement provides the only means we have to interact with both the world and other people. Such interactions can be hard-wired or learned through experience with the environment. Learning allows us to adapt to a changing physical environment as well as to novel conventions developed by society. Here we review motor learning from a computational perspective, exploring the need for motor learning, what is learned and how it is represented, and the mechanisms of learning. We relate these computational issues to empirical studies on motor learning in humans.</description><subject>innate behaviour</subject><subject>inverse model</subject><subject>movement</subject><subject>reinforcement learning</subject><subject>sensory inputs</subject><subject>supervised learning</subject><issn>1364-6613</issn><issn>1879-307X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEQx4MotlY_grLHiqzONNlk9yRSfEFBwR68hU12KpF91GRb8NubPsSjp5nD7z-PH2PnCNcIKG_ekEuRSol8DHAJqBRP-QEbYq6KlIN6P4z9LzJgJyF8AmCmlDxmA0SZC5HjkF29kg9Lsr1bU0jKtkqWvjM1NSFxbdJ0feeTmkrfuvbjlB0tyjrQ2b6O2Pzhfj59Smcvj8_Tu1lq48g-JRLWVLJU3HABaAAKQKRqongGCyBh0FglCSciV5gXnAqOsshkRoJiZsTGu7Hxkq8VhV43Lliq67KlbhU05lnBZSZkEdFsh1rfheBpoZfeNaX_1gh6o0lvNemNAw2gt5o0j7mL_YqVaaj6S-29ROB2B1D8c-3I62AdtZYq56MsXXXunxU_RMF1Ww</recordid><startdate>20011101</startdate><enddate>20011101</enddate><creator>Wolpert, Daniel M</creator><creator>Ghahramani, Zoubin</creator><creator>Flanagan, J.Randall</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20011101</creationdate><title>Perspectives and problems in motor learning</title><author>Wolpert, Daniel M ; Ghahramani, Zoubin ; Flanagan, J.Randall</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-ee4cbd6a73b3401b009011ed27350f0e4b1bc76e124871893e93169565e4e3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>innate behaviour</topic><topic>inverse model</topic><topic>movement</topic><topic>reinforcement learning</topic><topic>sensory inputs</topic><topic>supervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wolpert, Daniel M</creatorcontrib><creatorcontrib>Ghahramani, Zoubin</creatorcontrib><creatorcontrib>Flanagan, J.Randall</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in Cognitive Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wolpert, Daniel M</au><au>Ghahramani, Zoubin</au><au>Flanagan, J.Randall</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perspectives and problems in motor learning</atitle><jtitle>Trends in Cognitive Sciences</jtitle><addtitle>Trends Cogn Sci</addtitle><date>2001-11-01</date><risdate>2001</risdate><volume>5</volume><issue>11</issue><spage>487</spage><epage>494</epage><pages>487-494</pages><issn>1364-6613</issn><eissn>1879-307X</eissn><abstract>Movement provides the only means we have to interact with both the world and other people. Such interactions can be hard-wired or learned through experience with the environment. Learning allows us to adapt to a changing physical environment as well as to novel conventions developed by society. Here we review motor learning from a computational perspective, exploring the need for motor learning, what is learned and how it is represented, and the mechanisms of learning. We relate these computational issues to empirical studies on motor learning in humans.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>11684481</pmid><doi>10.1016/S1364-6613(00)01773-3</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-6613 |
ispartof | Trends in Cognitive Sciences, 2001-11, Vol.5 (11), p.487-494 |
issn | 1364-6613 1879-307X |
language | eng |
recordid | cdi_proquest_miscellaneous_1859365469 |
source | Elsevier ScienceDirect Journals |
subjects | innate behaviour inverse model movement reinforcement learning sensory inputs supervised learning |
title | Perspectives and problems in motor learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A01%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perspectives%20and%20problems%20in%20motor%20learning&rft.jtitle=Trends%20in%20Cognitive%20Sciences&rft.au=Wolpert,%20Daniel%20M&rft.date=2001-11-01&rft.volume=5&rft.issue=11&rft.spage=487&rft.epage=494&rft.pages=487-494&rft.issn=1364-6613&rft.eissn=1879-307X&rft_id=info:doi/10.1016/S1364-6613(00)01773-3&rft_dat=%3Cproquest_cross%3E1859365469%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859365469&rft_id=info:pmid/11684481&rft_els_id=S1364661300017733&rfr_iscdi=true |