Perspectives and problems in motor learning

Movement provides the only means we have to interact with both the world and other people. Such interactions can be hard-wired or learned through experience with the environment. Learning allows us to adapt to a changing physical environment as well as to novel conventions developed by society. Here...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Trends in Cognitive Sciences 2001-11, Vol.5 (11), p.487-494
Hauptverfasser: Wolpert, Daniel M, Ghahramani, Zoubin, Flanagan, J.Randall
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 494
container_issue 11
container_start_page 487
container_title Trends in Cognitive Sciences
container_volume 5
creator Wolpert, Daniel M
Ghahramani, Zoubin
Flanagan, J.Randall
description Movement provides the only means we have to interact with both the world and other people. Such interactions can be hard-wired or learned through experience with the environment. Learning allows us to adapt to a changing physical environment as well as to novel conventions developed by society. Here we review motor learning from a computational perspective, exploring the need for motor learning, what is learned and how it is represented, and the mechanisms of learning. We relate these computational issues to empirical studies on motor learning in humans.
doi_str_mv 10.1016/S1364-6613(00)01773-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1859365469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1364661300017733</els_id><sourcerecordid>1859365469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-ee4cbd6a73b3401b009011ed27350f0e4b1bc76e124871893e93169565e4e3b3</originalsourceid><addsrcrecordid>eNqFkEtLAzEQx4MotlY_grLHiqzONNlk9yRSfEFBwR68hU12KpF91GRb8NubPsSjp5nD7z-PH2PnCNcIKG_ekEuRSol8DHAJqBRP-QEbYq6KlIN6P4z9LzJgJyF8AmCmlDxmA0SZC5HjkF29kg9Lsr1bU0jKtkqWvjM1NSFxbdJ0feeTmkrfuvbjlB0tyjrQ2b6O2Pzhfj59Smcvj8_Tu1lq48g-JRLWVLJU3HABaAAKQKRqongGCyBh0FglCSciV5gXnAqOsshkRoJiZsTGu7Hxkq8VhV43Lliq67KlbhU05lnBZSZkEdFsh1rfheBpoZfeNaX_1gh6o0lvNemNAw2gt5o0j7mL_YqVaaj6S-29ROB2B1D8c-3I62AdtZYq56MsXXXunxU_RMF1Ww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859365469</pqid></control><display><type>article</type><title>Perspectives and problems in motor learning</title><source>Elsevier ScienceDirect Journals</source><creator>Wolpert, Daniel M ; Ghahramani, Zoubin ; Flanagan, J.Randall</creator><creatorcontrib>Wolpert, Daniel M ; Ghahramani, Zoubin ; Flanagan, J.Randall</creatorcontrib><description>Movement provides the only means we have to interact with both the world and other people. Such interactions can be hard-wired or learned through experience with the environment. Learning allows us to adapt to a changing physical environment as well as to novel conventions developed by society. Here we review motor learning from a computational perspective, exploring the need for motor learning, what is learned and how it is represented, and the mechanisms of learning. We relate these computational issues to empirical studies on motor learning in humans.</description><identifier>ISSN: 1364-6613</identifier><identifier>EISSN: 1879-307X</identifier><identifier>DOI: 10.1016/S1364-6613(00)01773-3</identifier><identifier>PMID: 11684481</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>innate behaviour ; inverse model ; movement ; reinforcement learning ; sensory inputs ; supervised learning</subject><ispartof>Trends in Cognitive Sciences, 2001-11, Vol.5 (11), p.487-494</ispartof><rights>2001 Elsevier Science Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-ee4cbd6a73b3401b009011ed27350f0e4b1bc76e124871893e93169565e4e3b3</citedby><cites>FETCH-LOGICAL-c481t-ee4cbd6a73b3401b009011ed27350f0e4b1bc76e124871893e93169565e4e3b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1364661300017733$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>313,314,776,780,788,3537,27899,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11684481$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wolpert, Daniel M</creatorcontrib><creatorcontrib>Ghahramani, Zoubin</creatorcontrib><creatorcontrib>Flanagan, J.Randall</creatorcontrib><title>Perspectives and problems in motor learning</title><title>Trends in Cognitive Sciences</title><addtitle>Trends Cogn Sci</addtitle><description>Movement provides the only means we have to interact with both the world and other people. Such interactions can be hard-wired or learned through experience with the environment. Learning allows us to adapt to a changing physical environment as well as to novel conventions developed by society. Here we review motor learning from a computational perspective, exploring the need for motor learning, what is learned and how it is represented, and the mechanisms of learning. We relate these computational issues to empirical studies on motor learning in humans.</description><subject>innate behaviour</subject><subject>inverse model</subject><subject>movement</subject><subject>reinforcement learning</subject><subject>sensory inputs</subject><subject>supervised learning</subject><issn>1364-6613</issn><issn>1879-307X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEQx4MotlY_grLHiqzONNlk9yRSfEFBwR68hU12KpF91GRb8NubPsSjp5nD7z-PH2PnCNcIKG_ekEuRSol8DHAJqBRP-QEbYq6KlIN6P4z9LzJgJyF8AmCmlDxmA0SZC5HjkF29kg9Lsr1bU0jKtkqWvjM1NSFxbdJ0feeTmkrfuvbjlB0tyjrQ2b6O2Pzhfj59Smcvj8_Tu1lq48g-JRLWVLJU3HABaAAKQKRqongGCyBh0FglCSciV5gXnAqOsshkRoJiZsTGu7Hxkq8VhV43Lliq67KlbhU05lnBZSZkEdFsh1rfheBpoZfeNaX_1gh6o0lvNemNAw2gt5o0j7mL_YqVaaj6S-29ROB2B1D8c-3I62AdtZYq56MsXXXunxU_RMF1Ww</recordid><startdate>20011101</startdate><enddate>20011101</enddate><creator>Wolpert, Daniel M</creator><creator>Ghahramani, Zoubin</creator><creator>Flanagan, J.Randall</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20011101</creationdate><title>Perspectives and problems in motor learning</title><author>Wolpert, Daniel M ; Ghahramani, Zoubin ; Flanagan, J.Randall</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-ee4cbd6a73b3401b009011ed27350f0e4b1bc76e124871893e93169565e4e3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>innate behaviour</topic><topic>inverse model</topic><topic>movement</topic><topic>reinforcement learning</topic><topic>sensory inputs</topic><topic>supervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wolpert, Daniel M</creatorcontrib><creatorcontrib>Ghahramani, Zoubin</creatorcontrib><creatorcontrib>Flanagan, J.Randall</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in Cognitive Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wolpert, Daniel M</au><au>Ghahramani, Zoubin</au><au>Flanagan, J.Randall</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perspectives and problems in motor learning</atitle><jtitle>Trends in Cognitive Sciences</jtitle><addtitle>Trends Cogn Sci</addtitle><date>2001-11-01</date><risdate>2001</risdate><volume>5</volume><issue>11</issue><spage>487</spage><epage>494</epage><pages>487-494</pages><issn>1364-6613</issn><eissn>1879-307X</eissn><abstract>Movement provides the only means we have to interact with both the world and other people. Such interactions can be hard-wired or learned through experience with the environment. Learning allows us to adapt to a changing physical environment as well as to novel conventions developed by society. Here we review motor learning from a computational perspective, exploring the need for motor learning, what is learned and how it is represented, and the mechanisms of learning. We relate these computational issues to empirical studies on motor learning in humans.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>11684481</pmid><doi>10.1016/S1364-6613(00)01773-3</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-6613
ispartof Trends in Cognitive Sciences, 2001-11, Vol.5 (11), p.487-494
issn 1364-6613
1879-307X
language eng
recordid cdi_proquest_miscellaneous_1859365469
source Elsevier ScienceDirect Journals
subjects innate behaviour
inverse model
movement
reinforcement learning
sensory inputs
supervised learning
title Perspectives and problems in motor learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A01%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perspectives%20and%20problems%20in%20motor%20learning&rft.jtitle=Trends%20in%20Cognitive%20Sciences&rft.au=Wolpert,%20Daniel%20M&rft.date=2001-11-01&rft.volume=5&rft.issue=11&rft.spage=487&rft.epage=494&rft.pages=487-494&rft.issn=1364-6613&rft.eissn=1879-307X&rft_id=info:doi/10.1016/S1364-6613(00)01773-3&rft_dat=%3Cproquest_cross%3E1859365469%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859365469&rft_id=info:pmid/11684481&rft_els_id=S1364661300017733&rfr_iscdi=true