Floating Bands in Nuclear Spectroscopy

The methods of heavy ion nuclear reaction spectroscopy are discussed. When combined with large γ ray arrays and charged particle selection methods, vast amounts of nuclear data are collected and complex nuclear level schemes approaching the extremes of angular momentum result. Often, bands of levels...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 1999-02, Vol.38 (4), p.622-632
1. Verfasser: Sheline, Raymond K
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 632
container_issue 4
container_start_page 622
container_title Inorganic chemistry
container_volume 38
creator Sheline, Raymond K
description The methods of heavy ion nuclear reaction spectroscopy are discussed. When combined with large γ ray arrays and charged particle selection methods, vast amounts of nuclear data are collected and complex nuclear level schemes approaching the extremes of angular momentum result. Often, bands of levels associated with particular nuclei cannot be specifically tied down in the nucleus. Examples of these floating bands are given for 135Pm and 152Dy. A correlation of the level schemes of 219Ra, observed in 223Th α decay and the nuclear reaction 208Pb(14C,3n), suggests that the ground state of 219Ra has not been observed in the nuclear reaction study. The resultant levels in 219Ra are then interpreted in terms of a reflection asymmetric nuclear model.
doi_str_mv 10.1021/ic981196v
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1859362891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859362891</sourcerecordid><originalsourceid>FETCH-LOGICAL-a313t-687c326d2617d581644058d13bde8a9de699dab8d5471cb232b14167013ac4723</originalsourceid><addsrcrecordid>eNptkEFLwzAUx4Mobk4PfgHpRdFDNS9p0-Sow05Bp7iJ3kKaZNLZtTVpxX17OzbmxdN78H78358fQseALwETuMq14ACCfe-gPsQEhzHg913Ux7jbgTHRQwfezzHGgkZsH_UAWII5TfroLC0q1eTlR3CjSuODvAzGrS6scsGktrpxlddVvTxEezNVeHu0mQP0mt5Oh3fhw9Pofnj9ECoKtAkZTzQlzBAGiYk5sCjCMTdAM2O5EsYyIYzKuImjBHRGKMkgWnUBqnSUEDpA5-vc2lVfrfWNXORe26JQpa1aL4HHgjLCBXToxRrVXUfv7EzWLl8ot5SA5UqL3Grp2JNNbJstrPkjNx46IFwDuW_sz_au3KdkCU1iOX2eSDZ-SdkofZRvHX-65pX2cl61ruys_PP4F_XpdZ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859362891</pqid></control><display><type>article</type><title>Floating Bands in Nuclear Spectroscopy</title><source>American Chemical Society Journals</source><creator>Sheline, Raymond K</creator><creatorcontrib>Sheline, Raymond K</creatorcontrib><description>The methods of heavy ion nuclear reaction spectroscopy are discussed. When combined with large γ ray arrays and charged particle selection methods, vast amounts of nuclear data are collected and complex nuclear level schemes approaching the extremes of angular momentum result. Often, bands of levels associated with particular nuclei cannot be specifically tied down in the nucleus. Examples of these floating bands are given for 135Pm and 152Dy. A correlation of the level schemes of 219Ra, observed in 223Th α decay and the nuclear reaction 208Pb(14C,3n), suggests that the ground state of 219Ra has not been observed in the nuclear reaction study. The resultant levels in 219Ra are then interpreted in terms of a reflection asymmetric nuclear model.</description><identifier>ISSN: 0020-1669</identifier><identifier>EISSN: 1520-510X</identifier><identifier>DOI: 10.1021/ic981196v</identifier><identifier>PMID: 11670837</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Inorganic chemistry, 1999-02, Vol.38 (4), p.622-632</ispartof><rights>Copyright © 1999 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a313t-687c326d2617d581644058d13bde8a9de699dab8d5471cb232b14167013ac4723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ic981196v$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ic981196v$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11670837$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sheline, Raymond K</creatorcontrib><title>Floating Bands in Nuclear Spectroscopy</title><title>Inorganic chemistry</title><addtitle>Inorg. Chem</addtitle><description>The methods of heavy ion nuclear reaction spectroscopy are discussed. When combined with large γ ray arrays and charged particle selection methods, vast amounts of nuclear data are collected and complex nuclear level schemes approaching the extremes of angular momentum result. Often, bands of levels associated with particular nuclei cannot be specifically tied down in the nucleus. Examples of these floating bands are given for 135Pm and 152Dy. A correlation of the level schemes of 219Ra, observed in 223Th α decay and the nuclear reaction 208Pb(14C,3n), suggests that the ground state of 219Ra has not been observed in the nuclear reaction study. The resultant levels in 219Ra are then interpreted in terms of a reflection asymmetric nuclear model.</description><issn>0020-1669</issn><issn>1520-510X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNptkEFLwzAUx4Mobk4PfgHpRdFDNS9p0-Sow05Bp7iJ3kKaZNLZtTVpxX17OzbmxdN78H78358fQseALwETuMq14ACCfe-gPsQEhzHg913Ux7jbgTHRQwfezzHGgkZsH_UAWII5TfroLC0q1eTlR3CjSuODvAzGrS6scsGktrpxlddVvTxEezNVeHu0mQP0mt5Oh3fhw9Pofnj9ECoKtAkZTzQlzBAGiYk5sCjCMTdAM2O5EsYyIYzKuImjBHRGKMkgWnUBqnSUEDpA5-vc2lVfrfWNXORe26JQpa1aL4HHgjLCBXToxRrVXUfv7EzWLl8ot5SA5UqL3Grp2JNNbJstrPkjNx46IFwDuW_sz_au3KdkCU1iOX2eSDZ-SdkofZRvHX-65pX2cl61ruys_PP4F_XpdZ4</recordid><startdate>19990222</startdate><enddate>19990222</enddate><creator>Sheline, Raymond K</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19990222</creationdate><title>Floating Bands in Nuclear Spectroscopy</title><author>Sheline, Raymond K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a313t-687c326d2617d581644058d13bde8a9de699dab8d5471cb232b14167013ac4723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheline, Raymond K</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheline, Raymond K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Floating Bands in Nuclear Spectroscopy</atitle><jtitle>Inorganic chemistry</jtitle><addtitle>Inorg. Chem</addtitle><date>1999-02-22</date><risdate>1999</risdate><volume>38</volume><issue>4</issue><spage>622</spage><epage>632</epage><pages>622-632</pages><issn>0020-1669</issn><eissn>1520-510X</eissn><abstract>The methods of heavy ion nuclear reaction spectroscopy are discussed. When combined with large γ ray arrays and charged particle selection methods, vast amounts of nuclear data are collected and complex nuclear level schemes approaching the extremes of angular momentum result. Often, bands of levels associated with particular nuclei cannot be specifically tied down in the nucleus. Examples of these floating bands are given for 135Pm and 152Dy. A correlation of the level schemes of 219Ra, observed in 223Th α decay and the nuclear reaction 208Pb(14C,3n), suggests that the ground state of 219Ra has not been observed in the nuclear reaction study. The resultant levels in 219Ra are then interpreted in terms of a reflection asymmetric nuclear model.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>11670837</pmid><doi>10.1021/ic981196v</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-1669
ispartof Inorganic chemistry, 1999-02, Vol.38 (4), p.622-632
issn 0020-1669
1520-510X
language eng
recordid cdi_proquest_miscellaneous_1859362891
source American Chemical Society Journals
title Floating Bands in Nuclear Spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A37%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Floating%20Bands%20in%20Nuclear%20Spectroscopy&rft.jtitle=Inorganic%20chemistry&rft.au=Sheline,%20Raymond%20K&rft.date=1999-02-22&rft.volume=38&rft.issue=4&rft.spage=622&rft.epage=632&rft.pages=622-632&rft.issn=0020-1669&rft.eissn=1520-510X&rft_id=info:doi/10.1021/ic981196v&rft_dat=%3Cproquest_cross%3E1859362891%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859362891&rft_id=info:pmid/11670837&rfr_iscdi=true