Iterative statistical approach to blind image deconvolution

Image deblurring has long been modeled as a deconvolution problem. In the literature, the point-spread function (PSF) is often assumed to be known exactly. However, in practical situations such as image acquisition in cameras, we may have incomplete knowledge of the PSF. This deblurring problem is r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2000-07, Vol.17 (7), p.1177-1184
Hauptverfasser: Lam, EY, Goodman, JW
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1184
container_issue 7
container_start_page 1177
container_title Journal of the Optical Society of America. A, Optics, image science, and vision
container_volume 17
creator Lam, EY
Goodman, JW
description Image deblurring has long been modeled as a deconvolution problem. In the literature, the point-spread function (PSF) is often assumed to be known exactly. However, in practical situations such as image acquisition in cameras, we may have incomplete knowledge of the PSF. This deblurring problem is referred to as blind deconvolution. We employ a statistical point of view of the data and use a modified maximum a posteriori approach to identify the most probable object and blur given the observed image. To facilitate computation we use an iterative method, which is an extension of the traditional expectation-maximization method, instead of direct optimization. We derive separate formulas for the updates of the estimates in each iteration to enhance the deconvolution results, which are based on the specific nature of our a priori knowledge available about the object and the blur.
doi_str_mv 10.1364/JOSAA.17.001177
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1859326224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859326224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-3eb68d84cb3de48e238187a37b5d6d5abbb6b5fbd9adb2b15659820dc119a7d33</originalsourceid><addsrcrecordid>eNpNkLtPwzAYxC0EoqUws6GMLGn9iF9iqioeRZU6ALPlVyAojUvsVOK_x5AOTPdJ393p9APgGsE5IqxaPG9flss54nMIEeL8BEwRxbAUlODTfENRlZxiOQEXMX5CCCsm-DmY5IcgkskpuFsn3-vUHHwRU9aYGqvbQu_3fdD2o0ihMG3TuaLZ6XdfOG9DdwjtkJrQXYKzWrfRXx11Bt4e7l9XT-Vm-7heLTelxZKmknjDhBOVNcT5SnhMBBJcE26oY45qYwwztDZOamewQZRRKTB0FiGpuSNkBm7H3rzpa_AxqV0TrW9b3fkwRIUElQQzjKtsXYxW24cYe1-rfZ-X998KQfVLTP0RU4irkVhO3BzLB7Pz7p9_RER-APcOZ0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859326224</pqid></control><display><type>article</type><title>Iterative statistical approach to blind image deconvolution</title><source>Optica Publishing Group Journals</source><creator>Lam, EY ; Goodman, JW</creator><creatorcontrib>Lam, EY ; Goodman, JW</creatorcontrib><description>Image deblurring has long been modeled as a deconvolution problem. In the literature, the point-spread function (PSF) is often assumed to be known exactly. However, in practical situations such as image acquisition in cameras, we may have incomplete knowledge of the PSF. This deblurring problem is referred to as blind deconvolution. We employ a statistical point of view of the data and use a modified maximum a posteriori approach to identify the most probable object and blur given the observed image. To facilitate computation we use an iterative method, which is an extension of the traditional expectation-maximization method, instead of direct optimization. We derive separate formulas for the updates of the estimates in each iteration to enhance the deconvolution results, which are based on the specific nature of our a priori knowledge available about the object and the blur.</description><identifier>ISSN: 1084-7529</identifier><identifier>EISSN: 1520-8532</identifier><identifier>DOI: 10.1364/JOSAA.17.001177</identifier><identifier>PMID: 10883969</identifier><language>eng</language><publisher>United States</publisher><ispartof>Journal of the Optical Society of America. A, Optics, image science, and vision, 2000-07, Vol.17 (7), p.1177-1184</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-3eb68d84cb3de48e238187a37b5d6d5abbb6b5fbd9adb2b15659820dc119a7d33</citedby><cites>FETCH-LOGICAL-c295t-3eb68d84cb3de48e238187a37b5d6d5abbb6b5fbd9adb2b15659820dc119a7d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10883969$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lam, EY</creatorcontrib><creatorcontrib>Goodman, JW</creatorcontrib><title>Iterative statistical approach to blind image deconvolution</title><title>Journal of the Optical Society of America. A, Optics, image science, and vision</title><addtitle>J Opt Soc Am A Opt Image Sci Vis</addtitle><description>Image deblurring has long been modeled as a deconvolution problem. In the literature, the point-spread function (PSF) is often assumed to be known exactly. However, in practical situations such as image acquisition in cameras, we may have incomplete knowledge of the PSF. This deblurring problem is referred to as blind deconvolution. We employ a statistical point of view of the data and use a modified maximum a posteriori approach to identify the most probable object and blur given the observed image. To facilitate computation we use an iterative method, which is an extension of the traditional expectation-maximization method, instead of direct optimization. We derive separate formulas for the updates of the estimates in each iteration to enhance the deconvolution results, which are based on the specific nature of our a priori knowledge available about the object and the blur.</description><issn>1084-7529</issn><issn>1520-8532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNpNkLtPwzAYxC0EoqUws6GMLGn9iF9iqioeRZU6ALPlVyAojUvsVOK_x5AOTPdJ393p9APgGsE5IqxaPG9flss54nMIEeL8BEwRxbAUlODTfENRlZxiOQEXMX5CCCsm-DmY5IcgkskpuFsn3-vUHHwRU9aYGqvbQu_3fdD2o0ihMG3TuaLZ6XdfOG9DdwjtkJrQXYKzWrfRXx11Bt4e7l9XT-Vm-7heLTelxZKmknjDhBOVNcT5SnhMBBJcE26oY45qYwwztDZOamewQZRRKTB0FiGpuSNkBm7H3rzpa_AxqV0TrW9b3fkwRIUElQQzjKtsXYxW24cYe1-rfZ-X998KQfVLTP0RU4irkVhO3BzLB7Pz7p9_RER-APcOZ0Q</recordid><startdate>20000701</startdate><enddate>20000701</enddate><creator>Lam, EY</creator><creator>Goodman, JW</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20000701</creationdate><title>Iterative statistical approach to blind image deconvolution</title><author>Lam, EY ; Goodman, JW</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-3eb68d84cb3de48e238187a37b5d6d5abbb6b5fbd9adb2b15659820dc119a7d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lam, EY</creatorcontrib><creatorcontrib>Goodman, JW</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the Optical Society of America. A, Optics, image science, and vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lam, EY</au><au>Goodman, JW</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iterative statistical approach to blind image deconvolution</atitle><jtitle>Journal of the Optical Society of America. A, Optics, image science, and vision</jtitle><addtitle>J Opt Soc Am A Opt Image Sci Vis</addtitle><date>2000-07-01</date><risdate>2000</risdate><volume>17</volume><issue>7</issue><spage>1177</spage><epage>1184</epage><pages>1177-1184</pages><issn>1084-7529</issn><eissn>1520-8532</eissn><abstract>Image deblurring has long been modeled as a deconvolution problem. In the literature, the point-spread function (PSF) is often assumed to be known exactly. However, in practical situations such as image acquisition in cameras, we may have incomplete knowledge of the PSF. This deblurring problem is referred to as blind deconvolution. We employ a statistical point of view of the data and use a modified maximum a posteriori approach to identify the most probable object and blur given the observed image. To facilitate computation we use an iterative method, which is an extension of the traditional expectation-maximization method, instead of direct optimization. We derive separate formulas for the updates of the estimates in each iteration to enhance the deconvolution results, which are based on the specific nature of our a priori knowledge available about the object and the blur.</abstract><cop>United States</cop><pmid>10883969</pmid><doi>10.1364/JOSAA.17.001177</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1084-7529
ispartof Journal of the Optical Society of America. A, Optics, image science, and vision, 2000-07, Vol.17 (7), p.1177-1184
issn 1084-7529
1520-8532
language eng
recordid cdi_proquest_miscellaneous_1859326224
source Optica Publishing Group Journals
title Iterative statistical approach to blind image deconvolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A15%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iterative%20statistical%20approach%20to%20blind%20image%20deconvolution&rft.jtitle=Journal%20of%20the%20Optical%20Society%20of%20America.%20A,%20Optics,%20image%20science,%20and%20vision&rft.au=Lam,%20EY&rft.date=2000-07-01&rft.volume=17&rft.issue=7&rft.spage=1177&rft.epage=1184&rft.pages=1177-1184&rft.issn=1084-7529&rft.eissn=1520-8532&rft_id=info:doi/10.1364/JOSAA.17.001177&rft_dat=%3Cproquest_cross%3E1859326224%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859326224&rft_id=info:pmid/10883969&rfr_iscdi=true