Potential Drugs and Nondrugs: Prediction and Identification of Important Structural Features
Using decision trees, a model to discriminate between potential drugs and nondrugs has been developed. Compounds from the Available Chemical Directory and the World Drug Index databases were used as training set; the molecular structures were represented using extended atom types. The error rate on...
Gespeichert in:
Veröffentlicht in: | Journal of Chemical Information and Computer Sciences 2000-03, Vol.40 (2), p.280-292 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!