Modal control of beam flexural vibration

An active control system was developed to control the flexural vibrations of a beam with a modal filtering with only one secondary actuator. Segmented piezoelectric actuators and sensors were used for driving and sensing the bending beam vibrations. The primary actuator was fed by a broadband random...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2000-04, Vol.107 (4), p.2061-2067
Hauptverfasser: Rizet, N, Brissaud, M, Gonnard, P, Bera, JC, Sunyach, M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An active control system was developed to control the flexural vibrations of a beam with a modal filtering with only one secondary actuator. Segmented piezoelectric actuators and sensors were used for driving and sensing the bending beam vibrations. The primary actuator was fed by a broadband random disturbance signal in order to excite the first five modes of the structure. However, only the second to fifth modes were controlled. The control algorithm was implemented on a DSP board and the input and output signals were filtered using high order low pass filters. These filters, implemented on the DSP board avoid the degrading effect on the control performances of the higher order modes and which are not controlled. The modal filtering was achieved by computing. To this end, it is based on a previous identification procedure. This latter models, in one step, the dynamics of the structure and also the transfer function of the electronic circuits of the controller. The identified filtered modes were then used to compute the gain matrix using a LQR technique (linear quadratic regulator). Simulations of the active control were carried out and practical implementation of the control algorithms was performed. Experimental and simulation results were then compared and discussed.
ISSN:0001-4966
1520-8524
DOI:10.1121/1.428488