Radicle' biochemistry: the biology of root-specific metabolism
The roots of higher plants are a fascinating and largely unexplored biological frontier. One of their features is the ability to synthesize a remarkable diversity of secondary metabolites, and to adjust their metabolic activities in response to biotic and abiotic stress. This includes the ability to...
Gespeichert in:
Veröffentlicht in: | Trends in Plant Science 1999-06, Vol.4 (6), p.220-226 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The roots of higher plants are a fascinating and largely unexplored biological frontier. One of their features is the ability to synthesize a remarkable diversity of secondary metabolites, and to adjust their metabolic activities in response to biotic and abiotic stress. This includes the ability to exude a complex array of micro- and macromolecules into the rhizosphere, with the potential to affect the inter-relationships between plants and beneficial or deleterious soil-borne organisms. In the past, research on root biology has been hampered by the underground growth habit of roots and by the lack of a suitable experimental system. However, recent progess in growing roots in isolation has greatly facilitated the study of root-specific metabolism and contributed to our understanding of this remarkable plant organ. |
---|---|
ISSN: | 1360-1385 1878-4372 |
DOI: | 10.1016/S1360-1385(99)01411-9 |