High-temperature expansion of the free energy of a massive scalar field in a curved space

The high-temperature expansion of the free energy of a free, massive scalar field propagating in a static space-time is derived in terms of the Minakshisundaram coefficients. The method is an extension of a conformal transformation technique using zeta functions.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Phys. Rev. D; (United States) 1988-11, Vol.38 (10), p.3327-3329
Hauptverfasser: DOWKER, J. S, SCHOFIELD, J. P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3329
container_issue 10
container_start_page 3327
container_title Phys. Rev. D; (United States)
container_volume 38
creator DOWKER, J. S
SCHOFIELD, J. P
description The high-temperature expansion of the free energy of a free, massive scalar field propagating in a static space-time is derived in terms of the Minakshisundaram coefficients. The method is an extension of a conformal transformation technique using zeta functions.
doi_str_mv 10.1103/PhysRevD.38.3327
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1859292569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859292569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-64e2f5d159291b62cc4a1e542b6064055de8e845764fd3ea8b580ce78a95d57e3</originalsourceid><addsrcrecordid>eNo9kE1rGzEQhkVJSByn914KIuSQy7r6WGmlY3GSJmBoKe2hJyFrZ2OF_apm19T_PrvYjS6CeZ-ZkR5CPnG24pzJLz92B_wJ-_uVNCspRfGBLDgzNsstN2dkwZTSmTCCX5IrxFc2HaHlBbmwVllm9IL8eYovu2yApofkhzEBhX-9bzF2Le0qOuyAVgmmagvp5TCXPG08YtwDxeBrn2gVoS5pbKckjGkPJcXeB7gm55WvET6e7iX5_fjwa_2Ubb5_e15_3WRBKjFkOgdRqZIrKyzfahFC7jmoXGw10_n0gRIMmFwVOq9KCd5slWEBCuOtKlUBcklujnM7HKLDEAcIu9C1LYTBaStVwe0E3R2hPnV_R8DBNRED1LVvoRvRcTPvF0rPKDuiIXWICSrXp9j4dHCcuVm6-y_dSeNm6VPL59P0cdtA-d5wsjzlt6fcz86q5NsQ8R2bHljkXMg3QUeKiA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859292569</pqid></control><display><type>article</type><title>High-temperature expansion of the free energy of a massive scalar field in a curved space</title><source>American Physical Society Journals</source><creator>DOWKER, J. S ; SCHOFIELD, J. P</creator><creatorcontrib>DOWKER, J. S ; SCHOFIELD, J. P ; Department of Theoretical Physics, The University of Manchester, Manchester, England</creatorcontrib><description>The high-temperature expansion of the free energy of a free, massive scalar field propagating in a static space-time is derived in terms of the Minakshisundaram coefficients. The method is an extension of a conformal transformation technique using zeta functions.</description><identifier>ISSN: 0556-2821</identifier><identifier>EISSN: 1089-4918</identifier><identifier>DOI: 10.1103/PhysRevD.38.3327</identifier><identifier>PMID: 9959086</identifier><identifier>CODEN: PRVDAQ</identifier><language>eng</language><publisher>Ridge, NY: American Physical Society</publisher><subject>ASTROPHYSICS ; COSMOLOGY ; DIFFERENTIAL EQUATIONS ; ENERGY ; ENERGY-MOMENTUM TENSOR ; EQUATIONS ; EQUATIONS OF MOTION ; Exact sciences and technology ; FREE ENERGY ; FUNCTIONS ; General relativity and gravitation ; GREEN FUNCTION ; INTEGRAL TRANSFORMATIONS ; MASS ; MELLIN TRANSFORM ; METRICS ; PARTIAL DIFFERENTIAL EQUATIONS ; PHYSICAL PROPERTIES ; Physics ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; PROPAGATOR ; Quantum gravity ; SCALAR FIELDS ; SCHROEDINGER EQUATION ; SPACE-TIME ; TEMPERATURE DEPENDENCE ; TENSORS ; THERMODYNAMIC PROPERTIES ; TRANSFORMATIONS ; WAVE EQUATIONS 645400 -- High Energy Physics-- Field Theory</subject><ispartof>Phys. Rev. D; (United States), 1988-11, Vol.38 (10), p.3327-3329</ispartof><rights>1989 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-64e2f5d159291b62cc4a1e542b6064055de8e845764fd3ea8b580ce78a95d57e3</citedby><cites>FETCH-LOGICAL-c352t-64e2f5d159291b62cc4a1e542b6064055de8e845764fd3ea8b580ce78a95d57e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7197412$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9959086$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6935719$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>DOWKER, J. S</creatorcontrib><creatorcontrib>SCHOFIELD, J. P</creatorcontrib><creatorcontrib>Department of Theoretical Physics, The University of Manchester, Manchester, England</creatorcontrib><title>High-temperature expansion of the free energy of a massive scalar field in a curved space</title><title>Phys. Rev. D; (United States)</title><addtitle>Phys Rev D Part Fields</addtitle><description>The high-temperature expansion of the free energy of a free, massive scalar field propagating in a static space-time is derived in terms of the Minakshisundaram coefficients. The method is an extension of a conformal transformation technique using zeta functions.</description><subject>ASTROPHYSICS</subject><subject>COSMOLOGY</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>ENERGY</subject><subject>ENERGY-MOMENTUM TENSOR</subject><subject>EQUATIONS</subject><subject>EQUATIONS OF MOTION</subject><subject>Exact sciences and technology</subject><subject>FREE ENERGY</subject><subject>FUNCTIONS</subject><subject>General relativity and gravitation</subject><subject>GREEN FUNCTION</subject><subject>INTEGRAL TRANSFORMATIONS</subject><subject>MASS</subject><subject>MELLIN TRANSFORM</subject><subject>METRICS</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>PHYSICAL PROPERTIES</subject><subject>Physics</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>PROPAGATOR</subject><subject>Quantum gravity</subject><subject>SCALAR FIELDS</subject><subject>SCHROEDINGER EQUATION</subject><subject>SPACE-TIME</subject><subject>TEMPERATURE DEPENDENCE</subject><subject>TENSORS</subject><subject>THERMODYNAMIC PROPERTIES</subject><subject>TRANSFORMATIONS</subject><subject>WAVE EQUATIONS 645400 -- High Energy Physics-- Field Theory</subject><issn>0556-2821</issn><issn>1089-4918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNo9kE1rGzEQhkVJSByn914KIuSQy7r6WGmlY3GSJmBoKe2hJyFrZ2OF_apm19T_PrvYjS6CeZ-ZkR5CPnG24pzJLz92B_wJ-_uVNCspRfGBLDgzNsstN2dkwZTSmTCCX5IrxFc2HaHlBbmwVllm9IL8eYovu2yApofkhzEBhX-9bzF2Le0qOuyAVgmmagvp5TCXPG08YtwDxeBrn2gVoS5pbKckjGkPJcXeB7gm55WvET6e7iX5_fjwa_2Ubb5_e15_3WRBKjFkOgdRqZIrKyzfahFC7jmoXGw10_n0gRIMmFwVOq9KCd5slWEBCuOtKlUBcklujnM7HKLDEAcIu9C1LYTBaStVwe0E3R2hPnV_R8DBNRED1LVvoRvRcTPvF0rPKDuiIXWICSrXp9j4dHCcuVm6-y_dSeNm6VPL59P0cdtA-d5wsjzlt6fcz86q5NsQ8R2bHljkXMg3QUeKiA</recordid><startdate>19881115</startdate><enddate>19881115</enddate><creator>DOWKER, J. S</creator><creator>SCHOFIELD, J. P</creator><general>American Physical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>19881115</creationdate><title>High-temperature expansion of the free energy of a massive scalar field in a curved space</title><author>DOWKER, J. S ; SCHOFIELD, J. P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-64e2f5d159291b62cc4a1e542b6064055de8e845764fd3ea8b580ce78a95d57e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>ASTROPHYSICS</topic><topic>COSMOLOGY</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>ENERGY</topic><topic>ENERGY-MOMENTUM TENSOR</topic><topic>EQUATIONS</topic><topic>EQUATIONS OF MOTION</topic><topic>Exact sciences and technology</topic><topic>FREE ENERGY</topic><topic>FUNCTIONS</topic><topic>General relativity and gravitation</topic><topic>GREEN FUNCTION</topic><topic>INTEGRAL TRANSFORMATIONS</topic><topic>MASS</topic><topic>MELLIN TRANSFORM</topic><topic>METRICS</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>PHYSICAL PROPERTIES</topic><topic>Physics</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>PROPAGATOR</topic><topic>Quantum gravity</topic><topic>SCALAR FIELDS</topic><topic>SCHROEDINGER EQUATION</topic><topic>SPACE-TIME</topic><topic>TEMPERATURE DEPENDENCE</topic><topic>TENSORS</topic><topic>THERMODYNAMIC PROPERTIES</topic><topic>TRANSFORMATIONS</topic><topic>WAVE EQUATIONS 645400 -- High Energy Physics-- Field Theory</topic><toplevel>online_resources</toplevel><creatorcontrib>DOWKER, J. S</creatorcontrib><creatorcontrib>SCHOFIELD, J. P</creatorcontrib><creatorcontrib>Department of Theoretical Physics, The University of Manchester, Manchester, England</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Phys. Rev. D; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DOWKER, J. S</au><au>SCHOFIELD, J. P</au><aucorp>Department of Theoretical Physics, The University of Manchester, Manchester, England</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-temperature expansion of the free energy of a massive scalar field in a curved space</atitle><jtitle>Phys. Rev. D; (United States)</jtitle><addtitle>Phys Rev D Part Fields</addtitle><date>1988-11-15</date><risdate>1988</risdate><volume>38</volume><issue>10</issue><spage>3327</spage><epage>3329</epage><pages>3327-3329</pages><issn>0556-2821</issn><eissn>1089-4918</eissn><coden>PRVDAQ</coden><abstract>The high-temperature expansion of the free energy of a free, massive scalar field propagating in a static space-time is derived in terms of the Minakshisundaram coefficients. The method is an extension of a conformal transformation technique using zeta functions.</abstract><cop>Ridge, NY</cop><pub>American Physical Society</pub><pmid>9959086</pmid><doi>10.1103/PhysRevD.38.3327</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0556-2821
ispartof Phys. Rev. D; (United States), 1988-11, Vol.38 (10), p.3327-3329
issn 0556-2821
1089-4918
language eng
recordid cdi_proquest_miscellaneous_1859292569
source American Physical Society Journals
subjects ASTROPHYSICS
COSMOLOGY
DIFFERENTIAL EQUATIONS
ENERGY
ENERGY-MOMENTUM TENSOR
EQUATIONS
EQUATIONS OF MOTION
Exact sciences and technology
FREE ENERGY
FUNCTIONS
General relativity and gravitation
GREEN FUNCTION
INTEGRAL TRANSFORMATIONS
MASS
MELLIN TRANSFORM
METRICS
PARTIAL DIFFERENTIAL EQUATIONS
PHYSICAL PROPERTIES
Physics
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
PROPAGATOR
Quantum gravity
SCALAR FIELDS
SCHROEDINGER EQUATION
SPACE-TIME
TEMPERATURE DEPENDENCE
TENSORS
THERMODYNAMIC PROPERTIES
TRANSFORMATIONS
WAVE EQUATIONS 645400 -- High Energy Physics-- Field Theory
title High-temperature expansion of the free energy of a massive scalar field in a curved space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A02%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-temperature%20expansion%20of%20the%20free%20energy%20of%20a%20massive%20scalar%20field%20in%20a%20curved%20space&rft.jtitle=Phys.%20Rev.%20D;%20(United%20States)&rft.au=DOWKER,%20J.%20S&rft.aucorp=Department%20of%20Theoretical%20Physics,%20The%20University%20of%20Manchester,%20Manchester,%20England&rft.date=1988-11-15&rft.volume=38&rft.issue=10&rft.spage=3327&rft.epage=3329&rft.pages=3327-3329&rft.issn=0556-2821&rft.eissn=1089-4918&rft.coden=PRVDAQ&rft_id=info:doi/10.1103/PhysRevD.38.3327&rft_dat=%3Cproquest_osti_%3E1859292569%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859292569&rft_id=info:pmid/9959086&rfr_iscdi=true