A chemically functionalizable nanoporous material

Although zeolites and related materials combine nanoporosity with high thermal stability, they are difficult to modify or derivatize in a systematic way. A highly porous metal coordination polymer [Cu3(TMA)2(H2O)3]n (where TMA is benzene-1,3,5-tricarboxylate) was formed in 80 percent yield. It has i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 1999-02, Vol.283 (5405), p.1148-1150
Hauptverfasser: Chui, SS, Lo, SM, Charmant, JP, Orpen, AG, Williams, ID
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1150
container_issue 5405
container_start_page 1148
container_title Science (American Association for the Advancement of Science)
container_volume 283
creator Chui, SS
Lo, SM
Charmant, JP
Orpen, AG
Williams, ID
description Although zeolites and related materials combine nanoporosity with high thermal stability, they are difficult to modify or derivatize in a systematic way. A highly porous metal coordination polymer [Cu3(TMA)2(H2O)3]n (where TMA is benzene-1,3,5-tricarboxylate) was formed in 80 percent yield. It has interconnected [Cu2(O2CR)4] units (where R is an aromatic ring), which create a three-dimensional system of channels with a pore size of 1 nanometer and an accessible porosity of about 40 percent in the solid. Unlike zeolites, the channel linings can be chemically functionalized; for example, the aqua ligands can be replaced by pyridines. Thermal gravimetric analysis and high-temperature single-crystal diffractometry indicate that the framework is stable up to 240 degreesC.
doi_str_mv 10.1126/science.283.5405.1148
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1859269124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859269124</sourcerecordid><originalsourceid>FETCH-LOGICAL-p209t-db9839dff6c3cc1e4de3f7af8bce7c0ed4ca42563a3294491e2d41919bbb06f93</originalsourceid><addsrcrecordid>eNo1j01Lw0AYhBdBbK3-BCVHL4n7lTTvsRStQsGLnsPuu-_iyubDbHKov96A9TTM8DDMMHYneCGErB4TBuqQClmrotS8XFJdX7C14FDmILlaseuUvjhfPKgrthKcSy3Vds3ELsNPagOaGE-ZnzucQt-ZGH6MjZR1puuHfuznlLVmojGYeMMuvYmJbs-6YR_PT-_7l_z4dnjd7475IDlMubNQK3DeV6gQBWlHym-Nry3SFjk5jUbLslJGSdAaBEmnBQiw1vLKg9qwh7_eYey_Z0pT04aEFKPpaNnTiLoEWYGQekHvz-hsW3LNMIbWjKfm_6b6BZ2bVSU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859269124</pqid></control><display><type>article</type><title>A chemically functionalizable nanoporous material</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Chui, SS ; Lo, SM ; Charmant, JP ; Orpen, AG ; Williams, ID</creator><creatorcontrib>Chui, SS ; Lo, SM ; Charmant, JP ; Orpen, AG ; Williams, ID</creatorcontrib><description>Although zeolites and related materials combine nanoporosity with high thermal stability, they are difficult to modify or derivatize in a systematic way. A highly porous metal coordination polymer [Cu3(TMA)2(H2O)3]n (where TMA is benzene-1,3,5-tricarboxylate) was formed in 80 percent yield. It has interconnected [Cu2(O2CR)4] units (where R is an aromatic ring), which create a three-dimensional system of channels with a pore size of 1 nanometer and an accessible porosity of about 40 percent in the solid. Unlike zeolites, the channel linings can be chemically functionalized; for example, the aqua ligands can be replaced by pyridines. Thermal gravimetric analysis and high-temperature single-crystal diffractometry indicate that the framework is stable up to 240 degreesC.</description><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.283.5405.1148</identifier><identifier>PMID: 10024237</identifier><language>eng</language><publisher>United States</publisher><ispartof>Science (American Association for the Advancement of Science), 1999-02, Vol.283 (5405), p.1148-1150</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10024237$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chui, SS</creatorcontrib><creatorcontrib>Lo, SM</creatorcontrib><creatorcontrib>Charmant, JP</creatorcontrib><creatorcontrib>Orpen, AG</creatorcontrib><creatorcontrib>Williams, ID</creatorcontrib><title>A chemically functionalizable nanoporous material</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Although zeolites and related materials combine nanoporosity with high thermal stability, they are difficult to modify or derivatize in a systematic way. A highly porous metal coordination polymer [Cu3(TMA)2(H2O)3]n (where TMA is benzene-1,3,5-tricarboxylate) was formed in 80 percent yield. It has interconnected [Cu2(O2CR)4] units (where R is an aromatic ring), which create a three-dimensional system of channels with a pore size of 1 nanometer and an accessible porosity of about 40 percent in the solid. Unlike zeolites, the channel linings can be chemically functionalized; for example, the aqua ligands can be replaced by pyridines. Thermal gravimetric analysis and high-temperature single-crystal diffractometry indicate that the framework is stable up to 240 degreesC.</description><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNo1j01Lw0AYhBdBbK3-BCVHL4n7lTTvsRStQsGLnsPuu-_iyubDbHKov96A9TTM8DDMMHYneCGErB4TBuqQClmrotS8XFJdX7C14FDmILlaseuUvjhfPKgrthKcSy3Vds3ELsNPagOaGE-ZnzucQt-ZGH6MjZR1puuHfuznlLVmojGYeMMuvYmJbs-6YR_PT-_7l_z4dnjd7475IDlMubNQK3DeV6gQBWlHym-Nry3SFjk5jUbLslJGSdAaBEmnBQiw1vLKg9qwh7_eYey_Z0pT04aEFKPpaNnTiLoEWYGQekHvz-hsW3LNMIbWjKfm_6b6BZ2bVSU</recordid><startdate>19990219</startdate><enddate>19990219</enddate><creator>Chui, SS</creator><creator>Lo, SM</creator><creator>Charmant, JP</creator><creator>Orpen, AG</creator><creator>Williams, ID</creator><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>19990219</creationdate><title>A chemically functionalizable nanoporous material</title><author>Chui, SS ; Lo, SM ; Charmant, JP ; Orpen, AG ; Williams, ID</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p209t-db9839dff6c3cc1e4de3f7af8bce7c0ed4ca42563a3294491e2d41919bbb06f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chui, SS</creatorcontrib><creatorcontrib>Lo, SM</creatorcontrib><creatorcontrib>Charmant, JP</creatorcontrib><creatorcontrib>Orpen, AG</creatorcontrib><creatorcontrib>Williams, ID</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chui, SS</au><au>Lo, SM</au><au>Charmant, JP</au><au>Orpen, AG</au><au>Williams, ID</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A chemically functionalizable nanoporous material</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>1999-02-19</date><risdate>1999</risdate><volume>283</volume><issue>5405</issue><spage>1148</spage><epage>1150</epage><pages>1148-1150</pages><eissn>1095-9203</eissn><abstract>Although zeolites and related materials combine nanoporosity with high thermal stability, they are difficult to modify or derivatize in a systematic way. A highly porous metal coordination polymer [Cu3(TMA)2(H2O)3]n (where TMA is benzene-1,3,5-tricarboxylate) was formed in 80 percent yield. It has interconnected [Cu2(O2CR)4] units (where R is an aromatic ring), which create a three-dimensional system of channels with a pore size of 1 nanometer and an accessible porosity of about 40 percent in the solid. Unlike zeolites, the channel linings can be chemically functionalized; for example, the aqua ligands can be replaced by pyridines. Thermal gravimetric analysis and high-temperature single-crystal diffractometry indicate that the framework is stable up to 240 degreesC.</abstract><cop>United States</cop><pmid>10024237</pmid><doi>10.1126/science.283.5405.1148</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1095-9203
ispartof Science (American Association for the Advancement of Science), 1999-02, Vol.283 (5405), p.1148-1150
issn 1095-9203
language eng
recordid cdi_proquest_miscellaneous_1859269124
source American Association for the Advancement of Science; Jstor Complete Legacy
title A chemically functionalizable nanoporous material
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A54%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20chemically%20functionalizable%20nanoporous%20material&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Chui,%20SS&rft.date=1999-02-19&rft.volume=283&rft.issue=5405&rft.spage=1148&rft.epage=1150&rft.pages=1148-1150&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.283.5405.1148&rft_dat=%3Cproquest_pubme%3E1859269124%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859269124&rft_id=info:pmid/10024237&rfr_iscdi=true