A chemically functionalizable nanoporous material
Although zeolites and related materials combine nanoporosity with high thermal stability, they are difficult to modify or derivatize in a systematic way. A highly porous metal coordination polymer [Cu3(TMA)2(H2O)3]n (where TMA is benzene-1,3,5-tricarboxylate) was formed in 80 percent yield. It has i...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 1999-02, Vol.283 (5405), p.1148-1150 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1150 |
---|---|
container_issue | 5405 |
container_start_page | 1148 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 283 |
creator | Chui, SS Lo, SM Charmant, JP Orpen, AG Williams, ID |
description | Although zeolites and related materials combine nanoporosity with high thermal stability, they are difficult to modify or derivatize in a systematic way. A highly porous metal coordination polymer [Cu3(TMA)2(H2O)3]n (where TMA is benzene-1,3,5-tricarboxylate) was formed in 80 percent yield. It has interconnected [Cu2(O2CR)4] units (where R is an aromatic ring), which create a three-dimensional system of channels with a pore size of 1 nanometer and an accessible porosity of about 40 percent in the solid. Unlike zeolites, the channel linings can be chemically functionalized; for example, the aqua ligands can be replaced by pyridines. Thermal gravimetric analysis and high-temperature single-crystal diffractometry indicate that the framework is stable up to 240 degreesC. |
doi_str_mv | 10.1126/science.283.5405.1148 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1859269124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859269124</sourcerecordid><originalsourceid>FETCH-LOGICAL-p209t-db9839dff6c3cc1e4de3f7af8bce7c0ed4ca42563a3294491e2d41919bbb06f93</originalsourceid><addsrcrecordid>eNo1j01Lw0AYhBdBbK3-BCVHL4n7lTTvsRStQsGLnsPuu-_iyubDbHKov96A9TTM8DDMMHYneCGErB4TBuqQClmrotS8XFJdX7C14FDmILlaseuUvjhfPKgrthKcSy3Vds3ELsNPagOaGE-ZnzucQt-ZGH6MjZR1puuHfuznlLVmojGYeMMuvYmJbs-6YR_PT-_7l_z4dnjd7475IDlMubNQK3DeV6gQBWlHym-Nry3SFjk5jUbLslJGSdAaBEmnBQiw1vLKg9qwh7_eYey_Z0pT04aEFKPpaNnTiLoEWYGQekHvz-hsW3LNMIbWjKfm_6b6BZ2bVSU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859269124</pqid></control><display><type>article</type><title>A chemically functionalizable nanoporous material</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Chui, SS ; Lo, SM ; Charmant, JP ; Orpen, AG ; Williams, ID</creator><creatorcontrib>Chui, SS ; Lo, SM ; Charmant, JP ; Orpen, AG ; Williams, ID</creatorcontrib><description>Although zeolites and related materials combine nanoporosity with high thermal stability, they are difficult to modify or derivatize in a systematic way. A highly porous metal coordination polymer [Cu3(TMA)2(H2O)3]n (where TMA is benzene-1,3,5-tricarboxylate) was formed in 80 percent yield. It has interconnected [Cu2(O2CR)4] units (where R is an aromatic ring), which create a three-dimensional system of channels with a pore size of 1 nanometer and an accessible porosity of about 40 percent in the solid. Unlike zeolites, the channel linings can be chemically functionalized; for example, the aqua ligands can be replaced by pyridines. Thermal gravimetric analysis and high-temperature single-crystal diffractometry indicate that the framework is stable up to 240 degreesC.</description><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.283.5405.1148</identifier><identifier>PMID: 10024237</identifier><language>eng</language><publisher>United States</publisher><ispartof>Science (American Association for the Advancement of Science), 1999-02, Vol.283 (5405), p.1148-1150</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10024237$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chui, SS</creatorcontrib><creatorcontrib>Lo, SM</creatorcontrib><creatorcontrib>Charmant, JP</creatorcontrib><creatorcontrib>Orpen, AG</creatorcontrib><creatorcontrib>Williams, ID</creatorcontrib><title>A chemically functionalizable nanoporous material</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Although zeolites and related materials combine nanoporosity with high thermal stability, they are difficult to modify or derivatize in a systematic way. A highly porous metal coordination polymer [Cu3(TMA)2(H2O)3]n (where TMA is benzene-1,3,5-tricarboxylate) was formed in 80 percent yield. It has interconnected [Cu2(O2CR)4] units (where R is an aromatic ring), which create a three-dimensional system of channels with a pore size of 1 nanometer and an accessible porosity of about 40 percent in the solid. Unlike zeolites, the channel linings can be chemically functionalized; for example, the aqua ligands can be replaced by pyridines. Thermal gravimetric analysis and high-temperature single-crystal diffractometry indicate that the framework is stable up to 240 degreesC.</description><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNo1j01Lw0AYhBdBbK3-BCVHL4n7lTTvsRStQsGLnsPuu-_iyubDbHKov96A9TTM8DDMMHYneCGErB4TBuqQClmrotS8XFJdX7C14FDmILlaseuUvjhfPKgrthKcSy3Vds3ELsNPagOaGE-ZnzucQt-ZGH6MjZR1puuHfuznlLVmojGYeMMuvYmJbs-6YR_PT-_7l_z4dnjd7475IDlMubNQK3DeV6gQBWlHym-Nry3SFjk5jUbLslJGSdAaBEmnBQiw1vLKg9qwh7_eYey_Z0pT04aEFKPpaNnTiLoEWYGQekHvz-hsW3LNMIbWjKfm_6b6BZ2bVSU</recordid><startdate>19990219</startdate><enddate>19990219</enddate><creator>Chui, SS</creator><creator>Lo, SM</creator><creator>Charmant, JP</creator><creator>Orpen, AG</creator><creator>Williams, ID</creator><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>19990219</creationdate><title>A chemically functionalizable nanoporous material</title><author>Chui, SS ; Lo, SM ; Charmant, JP ; Orpen, AG ; Williams, ID</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p209t-db9839dff6c3cc1e4de3f7af8bce7c0ed4ca42563a3294491e2d41919bbb06f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chui, SS</creatorcontrib><creatorcontrib>Lo, SM</creatorcontrib><creatorcontrib>Charmant, JP</creatorcontrib><creatorcontrib>Orpen, AG</creatorcontrib><creatorcontrib>Williams, ID</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chui, SS</au><au>Lo, SM</au><au>Charmant, JP</au><au>Orpen, AG</au><au>Williams, ID</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A chemically functionalizable nanoporous material</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>1999-02-19</date><risdate>1999</risdate><volume>283</volume><issue>5405</issue><spage>1148</spage><epage>1150</epage><pages>1148-1150</pages><eissn>1095-9203</eissn><abstract>Although zeolites and related materials combine nanoporosity with high thermal stability, they are difficult to modify or derivatize in a systematic way. A highly porous metal coordination polymer [Cu3(TMA)2(H2O)3]n (where TMA is benzene-1,3,5-tricarboxylate) was formed in 80 percent yield. It has interconnected [Cu2(O2CR)4] units (where R is an aromatic ring), which create a three-dimensional system of channels with a pore size of 1 nanometer and an accessible porosity of about 40 percent in the solid. Unlike zeolites, the channel linings can be chemically functionalized; for example, the aqua ligands can be replaced by pyridines. Thermal gravimetric analysis and high-temperature single-crystal diffractometry indicate that the framework is stable up to 240 degreesC.</abstract><cop>United States</cop><pmid>10024237</pmid><doi>10.1126/science.283.5405.1148</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1095-9203 |
ispartof | Science (American Association for the Advancement of Science), 1999-02, Vol.283 (5405), p.1148-1150 |
issn | 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_1859269124 |
source | American Association for the Advancement of Science; Jstor Complete Legacy |
title | A chemically functionalizable nanoporous material |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A54%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20chemically%20functionalizable%20nanoporous%20material&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Chui,%20SS&rft.date=1999-02-19&rft.volume=283&rft.issue=5405&rft.spage=1148&rft.epage=1150&rft.pages=1148-1150&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.283.5405.1148&rft_dat=%3Cproquest_pubme%3E1859269124%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859269124&rft_id=info:pmid/10024237&rfr_iscdi=true |