Singularities and horizons in the collisions of gravitational waves

It is well known that when gravitational plane waves propagating andcolliding in an otherwise flat background interact they produce singularities.In this paper we explore the structure of the singularities produced in thecollisions of arbitrarily polarized gravitational plane waves and we considerth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Phys. Rev. D; (United States) 1989-07, Vol.40 (2), p.329-359
1. Verfasser: YURTSEVER, U
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 359
container_issue 2
container_start_page 329
container_title Phys. Rev. D; (United States)
container_volume 40
creator YURTSEVER, U
description It is well known that when gravitational plane waves propagating andcolliding in an otherwise flat background interact they produce singularities.In this paper we explore the structure of the singularities produced in thecollisions of arbitrarily polarized gravitational plane waves and we considerthe problem of whether (or under what conditions) singularities can be producedin the collisions of /ital almost/-/ital plane/ gravitational waves with finitebut very large transverse sizes. First we analyze the asymptotic structure of ageneral arbitrarily polarized colliding plane-wave spacetime near itssingularity. We show that the metric is asymptotic to a generalizedinhomogeneous-Kasner solution as the singularity is approached. In general, theasymptotic Kasner axes as well as the asymptotic Kasner exponents along thesingularity are functions of the spatial coordinate that runs tangentially tothe singularity in the non-plane-symmetric direction.
doi_str_mv 10.1103/PhysRevD.40.329
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1859256911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859256911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-63bdd3190b520f0aa1bdbd4adcd69d978dfecdf3176fd0e3ebf460a0a43c29023</originalsourceid><addsrcrecordid>eNpNkMtrGzEQh0VoSJy059zCUnrIZR2NtCuvjsVpHhBo6eMsZvWIVdarVCM7pH99N9gNmcswwzc_mI-xM-BzAC4vv62e6bvfXs0bPpdCH7AZ8E7XjYbuHZvxtlW16AQcsxOi33wqoeQROwbOATohZ2z5I44PmwFzLNFThaOrVinHv2mkKo5VWfnKpmGIFF82KVQPGbexYJlmHKon3Hp6zw4DDuQ_7Psp-3X95efytr7_enO3_HxfW6mbUivZOydB874VPHBE6F3vGnTWKe30onPBWxckLFRw3Evfh0Zx5NhIKzQX8pR93OUmKtGQjcXblU3j6G0xrV5IDWqCLnbQY05_Np6KWUeyfhhw9GlDBrpWi1ZpgAm93KE2J6Lsg3nMcY352QA3L3rNf72m4WbSO12c78M3_dq7N_zO5wR82gNIFoeQcbSRXrnF9D4oIf8BjNqE0Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859256911</pqid></control><display><type>article</type><title>Singularities and horizons in the collisions of gravitational waves</title><source>American Physical Society Journals</source><creator>YURTSEVER, U</creator><creatorcontrib>YURTSEVER, U ; Theoretical Astrophysics, California Institute of Technology, Pasadena, California 91125(US)</creatorcontrib><description>It is well known that when gravitational plane waves propagating andcolliding in an otherwise flat background interact they produce singularities.In this paper we explore the structure of the singularities produced in thecollisions of arbitrarily polarized gravitational plane waves and we considerthe problem of whether (or under what conditions) singularities can be producedin the collisions of /ital almost/-/ital plane/ gravitational waves with finitebut very large transverse sizes. First we analyze the asymptotic structure of ageneral arbitrarily polarized colliding plane-wave spacetime near itssingularity. We show that the metric is asymptotic to a generalizedinhomogeneous-Kasner solution as the singularity is approached. In general, theasymptotic Kasner axes as well as the asymptotic Kasner exponents along thesingularity are functions of the spatial coordinate that runs tangentially tothe singularity in the non-plane-symmetric direction.</description><identifier>ISSN: 0556-2821</identifier><identifier>EISSN: 1089-4918</identifier><identifier>DOI: 10.1103/PhysRevD.40.329</identifier><identifier>PMID: 10011823</identifier><identifier>CODEN: PRVDAQ</identifier><language>eng</language><publisher>Ridge, NY: American Physical Society</publisher><subject>645400 - High Energy Physics- Field Theory ; 657003 - Theoretical &amp; Mathematical Physics- Relativity &amp; Gravitation ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Classical general relativity ; DIFFERENTIAL EQUATIONS ; EINSTEIN FIELD EQUATIONS ; EQUATIONS ; Exact sciences and technology ; FIELD EQUATIONS ; General relativity and gravitation ; GRAVITATIONAL WAVES ; MATHEMATICAL SPACE ; METRICS ; MINKOWSKI SPACE ; PARTIAL DIFFERENTIAL EQUATIONS ; Physics ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; POLARIZATION ; SINGULARITY ; SPACE ; SPACE-TIME ; WAVE EQUATIONS</subject><ispartof>Phys. Rev. D; (United States), 1989-07, Vol.40 (2), p.329-359</ispartof><rights>1989 INIST-CNRS</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-63bdd3190b520f0aa1bdbd4adcd69d978dfecdf3176fd0e3ebf460a0a43c29023</citedby><cites>FETCH-LOGICAL-c394t-63bdd3190b520f0aa1bdbd4adcd69d978dfecdf3176fd0e3ebf460a0a43c29023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7319162$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10011823$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5973916$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>YURTSEVER, U</creatorcontrib><creatorcontrib>Theoretical Astrophysics, California Institute of Technology, Pasadena, California 91125(US)</creatorcontrib><title>Singularities and horizons in the collisions of gravitational waves</title><title>Phys. Rev. D; (United States)</title><addtitle>Phys Rev D Part Fields</addtitle><description>It is well known that when gravitational plane waves propagating andcolliding in an otherwise flat background interact they produce singularities.In this paper we explore the structure of the singularities produced in thecollisions of arbitrarily polarized gravitational plane waves and we considerthe problem of whether (or under what conditions) singularities can be producedin the collisions of /ital almost/-/ital plane/ gravitational waves with finitebut very large transverse sizes. First we analyze the asymptotic structure of ageneral arbitrarily polarized colliding plane-wave spacetime near itssingularity. We show that the metric is asymptotic to a generalizedinhomogeneous-Kasner solution as the singularity is approached. In general, theasymptotic Kasner axes as well as the asymptotic Kasner exponents along thesingularity are functions of the spatial coordinate that runs tangentially tothe singularity in the non-plane-symmetric direction.</description><subject>645400 - High Energy Physics- Field Theory</subject><subject>657003 - Theoretical &amp; Mathematical Physics- Relativity &amp; Gravitation</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Classical general relativity</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>EINSTEIN FIELD EQUATIONS</subject><subject>EQUATIONS</subject><subject>Exact sciences and technology</subject><subject>FIELD EQUATIONS</subject><subject>General relativity and gravitation</subject><subject>GRAVITATIONAL WAVES</subject><subject>MATHEMATICAL SPACE</subject><subject>METRICS</subject><subject>MINKOWSKI SPACE</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>Physics</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>POLARIZATION</subject><subject>SINGULARITY</subject><subject>SPACE</subject><subject>SPACE-TIME</subject><subject>WAVE EQUATIONS</subject><issn>0556-2821</issn><issn>1089-4918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNpNkMtrGzEQh0VoSJy059zCUnrIZR2NtCuvjsVpHhBo6eMsZvWIVdarVCM7pH99N9gNmcswwzc_mI-xM-BzAC4vv62e6bvfXs0bPpdCH7AZ8E7XjYbuHZvxtlW16AQcsxOi33wqoeQROwbOATohZ2z5I44PmwFzLNFThaOrVinHv2mkKo5VWfnKpmGIFF82KVQPGbexYJlmHKon3Hp6zw4DDuQ_7Psp-3X95efytr7_enO3_HxfW6mbUivZOydB874VPHBE6F3vGnTWKe30onPBWxckLFRw3Evfh0Zx5NhIKzQX8pR93OUmKtGQjcXblU3j6G0xrV5IDWqCLnbQY05_Np6KWUeyfhhw9GlDBrpWi1ZpgAm93KE2J6Lsg3nMcY352QA3L3rNf72m4WbSO12c78M3_dq7N_zO5wR82gNIFoeQcbSRXrnF9D4oIf8BjNqE0Q</recordid><startdate>19890715</startdate><enddate>19890715</enddate><creator>YURTSEVER, U</creator><general>American Physical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>19890715</creationdate><title>Singularities and horizons in the collisions of gravitational waves</title><author>YURTSEVER, U</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-63bdd3190b520f0aa1bdbd4adcd69d978dfecdf3176fd0e3ebf460a0a43c29023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>645400 - High Energy Physics- Field Theory</topic><topic>657003 - Theoretical &amp; Mathematical Physics- Relativity &amp; Gravitation</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Classical general relativity</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>EINSTEIN FIELD EQUATIONS</topic><topic>EQUATIONS</topic><topic>Exact sciences and technology</topic><topic>FIELD EQUATIONS</topic><topic>General relativity and gravitation</topic><topic>GRAVITATIONAL WAVES</topic><topic>MATHEMATICAL SPACE</topic><topic>METRICS</topic><topic>MINKOWSKI SPACE</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>Physics</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>POLARIZATION</topic><topic>SINGULARITY</topic><topic>SPACE</topic><topic>SPACE-TIME</topic><topic>WAVE EQUATIONS</topic><toplevel>online_resources</toplevel><creatorcontrib>YURTSEVER, U</creatorcontrib><creatorcontrib>Theoretical Astrophysics, California Institute of Technology, Pasadena, California 91125(US)</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Phys. Rev. D; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>YURTSEVER, U</au><aucorp>Theoretical Astrophysics, California Institute of Technology, Pasadena, California 91125(US)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Singularities and horizons in the collisions of gravitational waves</atitle><jtitle>Phys. Rev. D; (United States)</jtitle><addtitle>Phys Rev D Part Fields</addtitle><date>1989-07-15</date><risdate>1989</risdate><volume>40</volume><issue>2</issue><spage>329</spage><epage>359</epage><pages>329-359</pages><issn>0556-2821</issn><eissn>1089-4918</eissn><coden>PRVDAQ</coden><abstract>It is well known that when gravitational plane waves propagating andcolliding in an otherwise flat background interact they produce singularities.In this paper we explore the structure of the singularities produced in thecollisions of arbitrarily polarized gravitational plane waves and we considerthe problem of whether (or under what conditions) singularities can be producedin the collisions of /ital almost/-/ital plane/ gravitational waves with finitebut very large transverse sizes. First we analyze the asymptotic structure of ageneral arbitrarily polarized colliding plane-wave spacetime near itssingularity. We show that the metric is asymptotic to a generalizedinhomogeneous-Kasner solution as the singularity is approached. In general, theasymptotic Kasner axes as well as the asymptotic Kasner exponents along thesingularity are functions of the spatial coordinate that runs tangentially tothe singularity in the non-plane-symmetric direction.</abstract><cop>Ridge, NY</cop><pub>American Physical Society</pub><pmid>10011823</pmid><doi>10.1103/PhysRevD.40.329</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0556-2821
ispartof Phys. Rev. D; (United States), 1989-07, Vol.40 (2), p.329-359
issn 0556-2821
1089-4918
language eng
recordid cdi_proquest_miscellaneous_1859256911
source American Physical Society Journals
subjects 645400 - High Energy Physics- Field Theory
657003 - Theoretical & Mathematical Physics- Relativity & Gravitation
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Classical general relativity
DIFFERENTIAL EQUATIONS
EINSTEIN FIELD EQUATIONS
EQUATIONS
Exact sciences and technology
FIELD EQUATIONS
General relativity and gravitation
GRAVITATIONAL WAVES
MATHEMATICAL SPACE
METRICS
MINKOWSKI SPACE
PARTIAL DIFFERENTIAL EQUATIONS
Physics
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
POLARIZATION
SINGULARITY
SPACE
SPACE-TIME
WAVE EQUATIONS
title Singularities and horizons in the collisions of gravitational waves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A15%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Singularities%20and%20horizons%20in%20the%20collisions%20of%20gravitational%20waves&rft.jtitle=Phys.%20Rev.%20D;%20(United%20States)&rft.au=YURTSEVER,%20U&rft.aucorp=Theoretical%20Astrophysics,%20California%20Institute%20of%20Technology,%20Pasadena,%20California%2091125(US)&rft.date=1989-07-15&rft.volume=40&rft.issue=2&rft.spage=329&rft.epage=359&rft.pages=329-359&rft.issn=0556-2821&rft.eissn=1089-4918&rft.coden=PRVDAQ&rft_id=info:doi/10.1103/PhysRevD.40.329&rft_dat=%3Cproquest_osti_%3E1859256911%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859256911&rft_id=info:pmid/10011823&rfr_iscdi=true