Singularities and horizons in the collisions of gravitational waves
It is well known that when gravitational plane waves propagating andcolliding in an otherwise flat background interact they produce singularities.In this paper we explore the structure of the singularities produced in thecollisions of arbitrarily polarized gravitational plane waves and we considerth...
Gespeichert in:
Veröffentlicht in: | Phys. Rev. D; (United States) 1989-07, Vol.40 (2), p.329-359 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 359 |
---|---|
container_issue | 2 |
container_start_page | 329 |
container_title | Phys. Rev. D; (United States) |
container_volume | 40 |
creator | YURTSEVER, U |
description | It is well known that when gravitational plane waves propagating andcolliding in an otherwise flat background interact they produce singularities.In this paper we explore the structure of the singularities produced in thecollisions of arbitrarily polarized gravitational plane waves and we considerthe problem of whether (or under what conditions) singularities can be producedin the collisions of /ital almost/-/ital plane/ gravitational waves with finitebut very large transverse sizes. First we analyze the asymptotic structure of ageneral arbitrarily polarized colliding plane-wave spacetime near itssingularity. We show that the metric is asymptotic to a generalizedinhomogeneous-Kasner solution as the singularity is approached. In general, theasymptotic Kasner axes as well as the asymptotic Kasner exponents along thesingularity are functions of the spatial coordinate that runs tangentially tothe singularity in the non-plane-symmetric direction. |
doi_str_mv | 10.1103/PhysRevD.40.329 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1859256911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859256911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-63bdd3190b520f0aa1bdbd4adcd69d978dfecdf3176fd0e3ebf460a0a43c29023</originalsourceid><addsrcrecordid>eNpNkMtrGzEQh0VoSJy059zCUnrIZR2NtCuvjsVpHhBo6eMsZvWIVdarVCM7pH99N9gNmcswwzc_mI-xM-BzAC4vv62e6bvfXs0bPpdCH7AZ8E7XjYbuHZvxtlW16AQcsxOi33wqoeQROwbOATohZ2z5I44PmwFzLNFThaOrVinHv2mkKo5VWfnKpmGIFF82KVQPGbexYJlmHKon3Hp6zw4DDuQ_7Psp-3X95efytr7_enO3_HxfW6mbUivZOydB874VPHBE6F3vGnTWKe30onPBWxckLFRw3Evfh0Zx5NhIKzQX8pR93OUmKtGQjcXblU3j6G0xrV5IDWqCLnbQY05_Np6KWUeyfhhw9GlDBrpWi1ZpgAm93KE2J6Lsg3nMcY352QA3L3rNf72m4WbSO12c78M3_dq7N_zO5wR82gNIFoeQcbSRXrnF9D4oIf8BjNqE0Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859256911</pqid></control><display><type>article</type><title>Singularities and horizons in the collisions of gravitational waves</title><source>American Physical Society Journals</source><creator>YURTSEVER, U</creator><creatorcontrib>YURTSEVER, U ; Theoretical Astrophysics, California Institute of Technology, Pasadena, California 91125(US)</creatorcontrib><description>It is well known that when gravitational plane waves propagating andcolliding in an otherwise flat background interact they produce singularities.In this paper we explore the structure of the singularities produced in thecollisions of arbitrarily polarized gravitational plane waves and we considerthe problem of whether (or under what conditions) singularities can be producedin the collisions of /ital almost/-/ital plane/ gravitational waves with finitebut very large transverse sizes. First we analyze the asymptotic structure of ageneral arbitrarily polarized colliding plane-wave spacetime near itssingularity. We show that the metric is asymptotic to a generalizedinhomogeneous-Kasner solution as the singularity is approached. In general, theasymptotic Kasner axes as well as the asymptotic Kasner exponents along thesingularity are functions of the spatial coordinate that runs tangentially tothe singularity in the non-plane-symmetric direction.</description><identifier>ISSN: 0556-2821</identifier><identifier>EISSN: 1089-4918</identifier><identifier>DOI: 10.1103/PhysRevD.40.329</identifier><identifier>PMID: 10011823</identifier><identifier>CODEN: PRVDAQ</identifier><language>eng</language><publisher>Ridge, NY: American Physical Society</publisher><subject>645400 - High Energy Physics- Field Theory ; 657003 - Theoretical & Mathematical Physics- Relativity & Gravitation ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Classical general relativity ; DIFFERENTIAL EQUATIONS ; EINSTEIN FIELD EQUATIONS ; EQUATIONS ; Exact sciences and technology ; FIELD EQUATIONS ; General relativity and gravitation ; GRAVITATIONAL WAVES ; MATHEMATICAL SPACE ; METRICS ; MINKOWSKI SPACE ; PARTIAL DIFFERENTIAL EQUATIONS ; Physics ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; POLARIZATION ; SINGULARITY ; SPACE ; SPACE-TIME ; WAVE EQUATIONS</subject><ispartof>Phys. Rev. D; (United States), 1989-07, Vol.40 (2), p.329-359</ispartof><rights>1989 INIST-CNRS</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-63bdd3190b520f0aa1bdbd4adcd69d978dfecdf3176fd0e3ebf460a0a43c29023</citedby><cites>FETCH-LOGICAL-c394t-63bdd3190b520f0aa1bdbd4adcd69d978dfecdf3176fd0e3ebf460a0a43c29023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7319162$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10011823$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5973916$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>YURTSEVER, U</creatorcontrib><creatorcontrib>Theoretical Astrophysics, California Institute of Technology, Pasadena, California 91125(US)</creatorcontrib><title>Singularities and horizons in the collisions of gravitational waves</title><title>Phys. Rev. D; (United States)</title><addtitle>Phys Rev D Part Fields</addtitle><description>It is well known that when gravitational plane waves propagating andcolliding in an otherwise flat background interact they produce singularities.In this paper we explore the structure of the singularities produced in thecollisions of arbitrarily polarized gravitational plane waves and we considerthe problem of whether (or under what conditions) singularities can be producedin the collisions of /ital almost/-/ital plane/ gravitational waves with finitebut very large transverse sizes. First we analyze the asymptotic structure of ageneral arbitrarily polarized colliding plane-wave spacetime near itssingularity. We show that the metric is asymptotic to a generalizedinhomogeneous-Kasner solution as the singularity is approached. In general, theasymptotic Kasner axes as well as the asymptotic Kasner exponents along thesingularity are functions of the spatial coordinate that runs tangentially tothe singularity in the non-plane-symmetric direction.</description><subject>645400 - High Energy Physics- Field Theory</subject><subject>657003 - Theoretical & Mathematical Physics- Relativity & Gravitation</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Classical general relativity</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>EINSTEIN FIELD EQUATIONS</subject><subject>EQUATIONS</subject><subject>Exact sciences and technology</subject><subject>FIELD EQUATIONS</subject><subject>General relativity and gravitation</subject><subject>GRAVITATIONAL WAVES</subject><subject>MATHEMATICAL SPACE</subject><subject>METRICS</subject><subject>MINKOWSKI SPACE</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>Physics</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>POLARIZATION</subject><subject>SINGULARITY</subject><subject>SPACE</subject><subject>SPACE-TIME</subject><subject>WAVE EQUATIONS</subject><issn>0556-2821</issn><issn>1089-4918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNpNkMtrGzEQh0VoSJy059zCUnrIZR2NtCuvjsVpHhBo6eMsZvWIVdarVCM7pH99N9gNmcswwzc_mI-xM-BzAC4vv62e6bvfXs0bPpdCH7AZ8E7XjYbuHZvxtlW16AQcsxOi33wqoeQROwbOATohZ2z5I44PmwFzLNFThaOrVinHv2mkKo5VWfnKpmGIFF82KVQPGbexYJlmHKon3Hp6zw4DDuQ_7Psp-3X95efytr7_enO3_HxfW6mbUivZOydB874VPHBE6F3vGnTWKe30onPBWxckLFRw3Evfh0Zx5NhIKzQX8pR93OUmKtGQjcXblU3j6G0xrV5IDWqCLnbQY05_Np6KWUeyfhhw9GlDBrpWi1ZpgAm93KE2J6Lsg3nMcY352QA3L3rNf72m4WbSO12c78M3_dq7N_zO5wR82gNIFoeQcbSRXrnF9D4oIf8BjNqE0Q</recordid><startdate>19890715</startdate><enddate>19890715</enddate><creator>YURTSEVER, U</creator><general>American Physical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>19890715</creationdate><title>Singularities and horizons in the collisions of gravitational waves</title><author>YURTSEVER, U</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-63bdd3190b520f0aa1bdbd4adcd69d978dfecdf3176fd0e3ebf460a0a43c29023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>645400 - High Energy Physics- Field Theory</topic><topic>657003 - Theoretical & Mathematical Physics- Relativity & Gravitation</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Classical general relativity</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>EINSTEIN FIELD EQUATIONS</topic><topic>EQUATIONS</topic><topic>Exact sciences and technology</topic><topic>FIELD EQUATIONS</topic><topic>General relativity and gravitation</topic><topic>GRAVITATIONAL WAVES</topic><topic>MATHEMATICAL SPACE</topic><topic>METRICS</topic><topic>MINKOWSKI SPACE</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>Physics</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>POLARIZATION</topic><topic>SINGULARITY</topic><topic>SPACE</topic><topic>SPACE-TIME</topic><topic>WAVE EQUATIONS</topic><toplevel>online_resources</toplevel><creatorcontrib>YURTSEVER, U</creatorcontrib><creatorcontrib>Theoretical Astrophysics, California Institute of Technology, Pasadena, California 91125(US)</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Phys. Rev. D; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>YURTSEVER, U</au><aucorp>Theoretical Astrophysics, California Institute of Technology, Pasadena, California 91125(US)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Singularities and horizons in the collisions of gravitational waves</atitle><jtitle>Phys. Rev. D; (United States)</jtitle><addtitle>Phys Rev D Part Fields</addtitle><date>1989-07-15</date><risdate>1989</risdate><volume>40</volume><issue>2</issue><spage>329</spage><epage>359</epage><pages>329-359</pages><issn>0556-2821</issn><eissn>1089-4918</eissn><coden>PRVDAQ</coden><abstract>It is well known that when gravitational plane waves propagating andcolliding in an otherwise flat background interact they produce singularities.In this paper we explore the structure of the singularities produced in thecollisions of arbitrarily polarized gravitational plane waves and we considerthe problem of whether (or under what conditions) singularities can be producedin the collisions of /ital almost/-/ital plane/ gravitational waves with finitebut very large transverse sizes. First we analyze the asymptotic structure of ageneral arbitrarily polarized colliding plane-wave spacetime near itssingularity. We show that the metric is asymptotic to a generalizedinhomogeneous-Kasner solution as the singularity is approached. In general, theasymptotic Kasner axes as well as the asymptotic Kasner exponents along thesingularity are functions of the spatial coordinate that runs tangentially tothe singularity in the non-plane-symmetric direction.</abstract><cop>Ridge, NY</cop><pub>American Physical Society</pub><pmid>10011823</pmid><doi>10.1103/PhysRevD.40.329</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0556-2821 |
ispartof | Phys. Rev. D; (United States), 1989-07, Vol.40 (2), p.329-359 |
issn | 0556-2821 1089-4918 |
language | eng |
recordid | cdi_proquest_miscellaneous_1859256911 |
source | American Physical Society Journals |
subjects | 645400 - High Energy Physics- Field Theory 657003 - Theoretical & Mathematical Physics- Relativity & Gravitation CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Classical general relativity DIFFERENTIAL EQUATIONS EINSTEIN FIELD EQUATIONS EQUATIONS Exact sciences and technology FIELD EQUATIONS General relativity and gravitation GRAVITATIONAL WAVES MATHEMATICAL SPACE METRICS MINKOWSKI SPACE PARTIAL DIFFERENTIAL EQUATIONS Physics PHYSICS OF ELEMENTARY PARTICLES AND FIELDS POLARIZATION SINGULARITY SPACE SPACE-TIME WAVE EQUATIONS |
title | Singularities and horizons in the collisions of gravitational waves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A15%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Singularities%20and%20horizons%20in%20the%20collisions%20of%20gravitational%20waves&rft.jtitle=Phys.%20Rev.%20D;%20(United%20States)&rft.au=YURTSEVER,%20U&rft.aucorp=Theoretical%20Astrophysics,%20California%20Institute%20of%20Technology,%20Pasadena,%20California%2091125(US)&rft.date=1989-07-15&rft.volume=40&rft.issue=2&rft.spage=329&rft.epage=359&rft.pages=329-359&rft.issn=0556-2821&rft.eissn=1089-4918&rft.coden=PRVDAQ&rft_id=info:doi/10.1103/PhysRevD.40.329&rft_dat=%3Cproquest_osti_%3E1859256911%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859256911&rft_id=info:pmid/10011823&rfr_iscdi=true |