Glory scattering by black holes

We present a physically motivated derivation of the JWKB backward glory-scattering cross section of massless waves by Schwarzschild black holes. The angular dependence of the cross section is identical with the one derived by path integration, namely, dsigma/d..cap omega.. = 4..pi../sup 2/lambda/sup...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Phys. Rev. D; (United States) 1985-04, Vol.31 (8), p.1869-1878
Hauptverfasser: MATZNER, R. A, DEWITTE-MORETTE, C, NELSON, B, TIAN-RONG ZHANG
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1878
container_issue 8
container_start_page 1869
container_title Phys. Rev. D; (United States)
container_volume 31
creator MATZNER, R. A
DEWITTE-MORETTE, C
NELSON, B
TIAN-RONG ZHANG
description We present a physically motivated derivation of the JWKB backward glory-scattering cross section of massless waves by Schwarzschild black holes. The angular dependence of the cross section is identical with the one derived by path integration, namely, dsigma/d..cap omega.. = 4..pi../sup 2/lambda/sup -1/B/sub g/ /sup 2/(dB mW..pi.., where lambda is the wavelength, B(theta) is the inverse of the classical deflection function CTHETA(B), B/sub g/ is the glory impact parameter, s is the helicity of the scattered wave, and J/sub 2s/ is the Bessel function of order 2s. The glory rings formed by scalar waves are bright at the center; those formed by polarized waves are dark at the center. For scattering of massless particles by a spherical black hole of mass M, B(theta)/Mapprox.3 ..sqrt..3 + 3.48 exp(-theta), theta > owig..pi... The numerical values of dsigma/d..cap omega.. for this deflection function are found to agree with earlier computer calculations of glory cross sections from black holes.
doi_str_mv 10.1103/PhysRevD.31.1869
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1859255910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859255910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-9a493c430a990a909af269031b519fe85d7a741c8f6e56e8441e54ea933bfd053</originalsourceid><addsrcrecordid>eNo9kMFOwzAMQCMEGmNw54KoEAcuHXGTtPERDRhIk0AIzlGauazQtSPpkPr3dNqYJcsHP1v2Y-wc-BiAi9vXRRfe6Pd-LGAMOsUDNgSuMZYI-pANuVJpnOgEjtlJCF-8jyQVAzZAVApBDtnltGp8FwVn25Z8WX9GeRfllXXf0aKpKJyyo8JWgc52dcQ-Hh_eJ0_x7GX6PLmbxU4o2cZoJQonBbeIfXK0RZIiF5ArwIK0mmc2k-B0kZJKSUsJpCRZFCIv5lyJEbva7m1CW5rgypbcwjV1Ta41KsskJthDN1to5ZufNYXWLMvgqKpsTc06GNAKk81jvEf5FnW-CcFTYVa-XFrfGeBmo878qzMCzEZdP3Kx277OlzTfD-xc9f3rXd_2uqrC29qVYY9pmUB_gPgDTul1HQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859255910</pqid></control><display><type>article</type><title>Glory scattering by black holes</title><source>American Physical Society Journals</source><creator>MATZNER, R. A ; DEWITTE-MORETTE, C ; NELSON, B ; TIAN-RONG ZHANG</creator><creatorcontrib>MATZNER, R. A ; DEWITTE-MORETTE, C ; NELSON, B ; TIAN-RONG ZHANG ; Relativity Center and Department of Physics, University of Texas, Austin, Texas 78712</creatorcontrib><description>We present a physically motivated derivation of the JWKB backward glory-scattering cross section of massless waves by Schwarzschild black holes. The angular dependence of the cross section is identical with the one derived by path integration, namely, dsigma/d..cap omega.. = 4..pi../sup 2/lambda/sup -1/B/sub g/ /sup 2/(dB mW..pi.., where lambda is the wavelength, B(theta) is the inverse of the classical deflection function CTHETA(B), B/sub g/ is the glory impact parameter, s is the helicity of the scattered wave, and J/sub 2s/ is the Bessel function of order 2s. The glory rings formed by scalar waves are bright at the center; those formed by polarized waves are dark at the center. For scattering of massless particles by a spherical black hole of mass M, B(theta)/Mapprox.3 ..sqrt..3 + 3.48 exp(-theta), theta &gt; owig..pi... The numerical values of dsigma/d..cap omega.. for this deflection function are found to agree with earlier computer calculations of glory cross sections from black holes.</description><identifier>ISSN: 0556-2821</identifier><identifier>EISSN: 1089-4918</identifier><identifier>DOI: 10.1103/PhysRevD.31.1869</identifier><identifier>PMID: 9955914</identifier><identifier>CODEN: PRVDAQ</identifier><language>eng</language><publisher>Ridge, NY: American Physical Society</publisher><subject>640102 - Astrophysics &amp; Cosmology- Stars &amp; Quasi-Stellar, Radio &amp; X-Ray Sources ; 645202 - High Energy Physics- Particle Interactions &amp; Properties-Theoretical- Electromagnetic Interactions &amp; Properties ; ANGULAR DISTRIBUTION ; BESSEL FUNCTIONS ; BLACK HOLES ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Classical general relativity ; CROSS SECTIONS ; DISTRIBUTION ; ELECTROMAGNETIC RADIATION ; ELEMENTARY PARTICLES ; Exact sciences and technology ; FEYNMAN PATH INTEGRAL ; FUNCTIONS ; General relativity and gravitation ; HELICITY ; INTEGRALS ; MASSLESS PARTICLES ; PARTICLE PROPERTIES ; Physics ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; RADIATIONS ; SCATTERING ; SCHWARZSCHILD RADIUS ; VISIBLE RADIATION</subject><ispartof>Phys. Rev. D; (United States), 1985-04, Vol.31 (8), p.1869-1878</ispartof><rights>1986 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-9a493c430a990a909af269031b519fe85d7a741c8f6e56e8441e54ea933bfd053</citedby><cites>FETCH-LOGICAL-c354t-9a493c430a990a909af269031b519fe85d7a741c8f6e56e8441e54ea933bfd053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8421185$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9955914$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5774929$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>MATZNER, R. A</creatorcontrib><creatorcontrib>DEWITTE-MORETTE, C</creatorcontrib><creatorcontrib>NELSON, B</creatorcontrib><creatorcontrib>TIAN-RONG ZHANG</creatorcontrib><creatorcontrib>Relativity Center and Department of Physics, University of Texas, Austin, Texas 78712</creatorcontrib><title>Glory scattering by black holes</title><title>Phys. Rev. D; (United States)</title><addtitle>Phys Rev D Part Fields</addtitle><description>We present a physically motivated derivation of the JWKB backward glory-scattering cross section of massless waves by Schwarzschild black holes. The angular dependence of the cross section is identical with the one derived by path integration, namely, dsigma/d..cap omega.. = 4..pi../sup 2/lambda/sup -1/B/sub g/ /sup 2/(dB mW..pi.., where lambda is the wavelength, B(theta) is the inverse of the classical deflection function CTHETA(B), B/sub g/ is the glory impact parameter, s is the helicity of the scattered wave, and J/sub 2s/ is the Bessel function of order 2s. The glory rings formed by scalar waves are bright at the center; those formed by polarized waves are dark at the center. For scattering of massless particles by a spherical black hole of mass M, B(theta)/Mapprox.3 ..sqrt..3 + 3.48 exp(-theta), theta &gt; owig..pi... The numerical values of dsigma/d..cap omega.. for this deflection function are found to agree with earlier computer calculations of glory cross sections from black holes.</description><subject>640102 - Astrophysics &amp; Cosmology- Stars &amp; Quasi-Stellar, Radio &amp; X-Ray Sources</subject><subject>645202 - High Energy Physics- Particle Interactions &amp; Properties-Theoretical- Electromagnetic Interactions &amp; Properties</subject><subject>ANGULAR DISTRIBUTION</subject><subject>BESSEL FUNCTIONS</subject><subject>BLACK HOLES</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Classical general relativity</subject><subject>CROSS SECTIONS</subject><subject>DISTRIBUTION</subject><subject>ELECTROMAGNETIC RADIATION</subject><subject>ELEMENTARY PARTICLES</subject><subject>Exact sciences and technology</subject><subject>FEYNMAN PATH INTEGRAL</subject><subject>FUNCTIONS</subject><subject>General relativity and gravitation</subject><subject>HELICITY</subject><subject>INTEGRALS</subject><subject>MASSLESS PARTICLES</subject><subject>PARTICLE PROPERTIES</subject><subject>Physics</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>RADIATIONS</subject><subject>SCATTERING</subject><subject>SCHWARZSCHILD RADIUS</subject><subject>VISIBLE RADIATION</subject><issn>0556-2821</issn><issn>1089-4918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNo9kMFOwzAMQCMEGmNw54KoEAcuHXGTtPERDRhIk0AIzlGauazQtSPpkPr3dNqYJcsHP1v2Y-wc-BiAi9vXRRfe6Pd-LGAMOsUDNgSuMZYI-pANuVJpnOgEjtlJCF-8jyQVAzZAVApBDtnltGp8FwVn25Z8WX9GeRfllXXf0aKpKJyyo8JWgc52dcQ-Hh_eJ0_x7GX6PLmbxU4o2cZoJQonBbeIfXK0RZIiF5ArwIK0mmc2k-B0kZJKSUsJpCRZFCIv5lyJEbva7m1CW5rgypbcwjV1Ta41KsskJthDN1to5ZufNYXWLMvgqKpsTc06GNAKk81jvEf5FnW-CcFTYVa-XFrfGeBmo878qzMCzEZdP3Kx277OlzTfD-xc9f3rXd_2uqrC29qVYY9pmUB_gPgDTul1HQ</recordid><startdate>19850415</startdate><enddate>19850415</enddate><creator>MATZNER, R. A</creator><creator>DEWITTE-MORETTE, C</creator><creator>NELSON, B</creator><creator>TIAN-RONG ZHANG</creator><general>American Physical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>19850415</creationdate><title>Glory scattering by black holes</title><author>MATZNER, R. A ; DEWITTE-MORETTE, C ; NELSON, B ; TIAN-RONG ZHANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-9a493c430a990a909af269031b519fe85d7a741c8f6e56e8441e54ea933bfd053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>640102 - Astrophysics &amp; Cosmology- Stars &amp; Quasi-Stellar, Radio &amp; X-Ray Sources</topic><topic>645202 - High Energy Physics- Particle Interactions &amp; Properties-Theoretical- Electromagnetic Interactions &amp; Properties</topic><topic>ANGULAR DISTRIBUTION</topic><topic>BESSEL FUNCTIONS</topic><topic>BLACK HOLES</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Classical general relativity</topic><topic>CROSS SECTIONS</topic><topic>DISTRIBUTION</topic><topic>ELECTROMAGNETIC RADIATION</topic><topic>ELEMENTARY PARTICLES</topic><topic>Exact sciences and technology</topic><topic>FEYNMAN PATH INTEGRAL</topic><topic>FUNCTIONS</topic><topic>General relativity and gravitation</topic><topic>HELICITY</topic><topic>INTEGRALS</topic><topic>MASSLESS PARTICLES</topic><topic>PARTICLE PROPERTIES</topic><topic>Physics</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>RADIATIONS</topic><topic>SCATTERING</topic><topic>SCHWARZSCHILD RADIUS</topic><topic>VISIBLE RADIATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MATZNER, R. A</creatorcontrib><creatorcontrib>DEWITTE-MORETTE, C</creatorcontrib><creatorcontrib>NELSON, B</creatorcontrib><creatorcontrib>TIAN-RONG ZHANG</creatorcontrib><creatorcontrib>Relativity Center and Department of Physics, University of Texas, Austin, Texas 78712</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Phys. Rev. D; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MATZNER, R. A</au><au>DEWITTE-MORETTE, C</au><au>NELSON, B</au><au>TIAN-RONG ZHANG</au><aucorp>Relativity Center and Department of Physics, University of Texas, Austin, Texas 78712</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glory scattering by black holes</atitle><jtitle>Phys. Rev. D; (United States)</jtitle><addtitle>Phys Rev D Part Fields</addtitle><date>1985-04-15</date><risdate>1985</risdate><volume>31</volume><issue>8</issue><spage>1869</spage><epage>1878</epage><pages>1869-1878</pages><issn>0556-2821</issn><eissn>1089-4918</eissn><coden>PRVDAQ</coden><abstract>We present a physically motivated derivation of the JWKB backward glory-scattering cross section of massless waves by Schwarzschild black holes. The angular dependence of the cross section is identical with the one derived by path integration, namely, dsigma/d..cap omega.. = 4..pi../sup 2/lambda/sup -1/B/sub g/ /sup 2/(dB mW..pi.., where lambda is the wavelength, B(theta) is the inverse of the classical deflection function CTHETA(B), B/sub g/ is the glory impact parameter, s is the helicity of the scattered wave, and J/sub 2s/ is the Bessel function of order 2s. The glory rings formed by scalar waves are bright at the center; those formed by polarized waves are dark at the center. For scattering of massless particles by a spherical black hole of mass M, B(theta)/Mapprox.3 ..sqrt..3 + 3.48 exp(-theta), theta &gt; owig..pi... The numerical values of dsigma/d..cap omega.. for this deflection function are found to agree with earlier computer calculations of glory cross sections from black holes.</abstract><cop>Ridge, NY</cop><pub>American Physical Society</pub><pmid>9955914</pmid><doi>10.1103/PhysRevD.31.1869</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0556-2821
ispartof Phys. Rev. D; (United States), 1985-04, Vol.31 (8), p.1869-1878
issn 0556-2821
1089-4918
language eng
recordid cdi_proquest_miscellaneous_1859255910
source American Physical Society Journals
subjects 640102 - Astrophysics & Cosmology- Stars & Quasi-Stellar, Radio & X-Ray Sources
645202 - High Energy Physics- Particle Interactions & Properties-Theoretical- Electromagnetic Interactions & Properties
ANGULAR DISTRIBUTION
BESSEL FUNCTIONS
BLACK HOLES
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Classical general relativity
CROSS SECTIONS
DISTRIBUTION
ELECTROMAGNETIC RADIATION
ELEMENTARY PARTICLES
Exact sciences and technology
FEYNMAN PATH INTEGRAL
FUNCTIONS
General relativity and gravitation
HELICITY
INTEGRALS
MASSLESS PARTICLES
PARTICLE PROPERTIES
Physics
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
RADIATIONS
SCATTERING
SCHWARZSCHILD RADIUS
VISIBLE RADIATION
title Glory scattering by black holes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glory%20scattering%20by%20black%20holes&rft.jtitle=Phys.%20Rev.%20D;%20(United%20States)&rft.au=MATZNER,%20R.%20A&rft.aucorp=Relativity%20Center%20and%20Department%20of%20Physics,%20University%20of%20Texas,%20Austin,%20Texas%2078712&rft.date=1985-04-15&rft.volume=31&rft.issue=8&rft.spage=1869&rft.epage=1878&rft.pages=1869-1878&rft.issn=0556-2821&rft.eissn=1089-4918&rft.coden=PRVDAQ&rft_id=info:doi/10.1103/PhysRevD.31.1869&rft_dat=%3Cproquest_osti_%3E1859255910%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859255910&rft_id=info:pmid/9955914&rfr_iscdi=true