Bifurcation in the Yang-Mills field equations with static sources

We argue that the bifurcation phenomenon in the Yang-Mills field equations can be distinguished into weak and strong forms. For the weak form we demonstrate explicitly that there are an infinite number of bifurcating branches emanating from a bifurcation point.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Phys. Rev. D; (United States) 1987-10, Vol.36 (8), p.2527-2531
Hauptverfasser: OH, C. H, PARWANI, R. R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2531
container_issue 8
container_start_page 2527
container_title Phys. Rev. D; (United States)
container_volume 36
creator OH, C. H
PARWANI, R. R
description We argue that the bifurcation phenomenon in the Yang-Mills field equations can be distinguished into weak and strong forms. For the weak form we demonstrate explicitly that there are an infinite number of bifurcating branches emanating from a bifurcation point.
doi_str_mv 10.1103/PhysRevD.36.2527
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1859249753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859249753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-d565f0a6e8328d17230fb8f09240ec63560d2e5d7fa08388c343b5afa4516aaf3</originalsourceid><addsrcrecordid>eNo9kL1PwzAQxS0EKqWwsyBFiIElxR-x44ylfEpFIAQDk-U6NjVKkzbngPrf49LSW06n93t3p4fQKcFDQjC7epmt4NV-3wyZGFJO8z3UJ1gWaVYQuY_6mHORUknJIToC-MKxqGA91CsKLjNB-2h07V3XGh18Uye-TsLMJh-6_kyffFVB4rytysQuuz8Akh8fZgmEOJkEmmi0cIwOnK7Anmz7AL3f3b6NH9LJ8_3jeDRJDeNZSEsuuMNaWMmoLElOGXZT6XBBM2yNYFzgklpe5k5jyaQ0LGNTrp3OOBFaOzZA55u9DQSvwPhgzcw0dW1NUIJELJcRutxAi7ZZdhaCmnswtqp0bZsOFJE8HixyziKKN6hpG4DWOrVo_Vy3K0WwWoer_sNVTKh1uNFytt3eTee23Bm2aUb9YqtrMLpyra6Nhx2WC0ZofPIXOwqCPw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859249753</pqid></control><display><type>article</type><title>Bifurcation in the Yang-Mills field equations with static sources</title><source>American Physical Society Journals</source><creator>OH, C. H ; PARWANI, R. R</creator><creatorcontrib>OH, C. H ; PARWANI, R. R ; Physics Department, Faculty of Science, National University of Singapore, Kent Ridge, Singapore 0511, Republic of Singapore</creatorcontrib><description>We argue that the bifurcation phenomenon in the Yang-Mills field equations can be distinguished into weak and strong forms. For the weak form we demonstrate explicitly that there are an infinite number of bifurcating branches emanating from a bifurcation point.</description><identifier>ISSN: 0556-2821</identifier><identifier>EISSN: 1089-4918</identifier><identifier>DOI: 10.1103/PhysRevD.36.2527</identifier><identifier>PMID: 9958462</identifier><identifier>CODEN: PRVDAQ</identifier><language>eng</language><publisher>Ridge, NY: American Physical Society</publisher><subject>645400 - High Energy Physics- Field Theory ; CHARGE DENSITY ; Classical and quantum physics: mechanics and fields ; COULOMB FIELD ; DIFFERENTIAL EQUATIONS ; ELECTRIC FIELDS ; EQUATIONS ; Exact sciences and technology ; FIELD EQUATIONS ; GAUGE INVARIANCE ; INVARIANCE PRINCIPLES ; Physics ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; Theory of quantized fields ; YANG-MILLS THEORY</subject><ispartof>Phys. Rev. D; (United States), 1987-10, Vol.36 (8), p.2527-2531</ispartof><rights>1988 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-d565f0a6e8328d17230fb8f09240ec63560d2e5d7fa08388c343b5afa4516aaf3</citedby><cites>FETCH-LOGICAL-c354t-d565f0a6e8328d17230fb8f09240ec63560d2e5d7fa08388c343b5afa4516aaf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7631278$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9958462$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6145178$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>OH, C. H</creatorcontrib><creatorcontrib>PARWANI, R. R</creatorcontrib><creatorcontrib>Physics Department, Faculty of Science, National University of Singapore, Kent Ridge, Singapore 0511, Republic of Singapore</creatorcontrib><title>Bifurcation in the Yang-Mills field equations with static sources</title><title>Phys. Rev. D; (United States)</title><addtitle>Phys Rev D Part Fields</addtitle><description>We argue that the bifurcation phenomenon in the Yang-Mills field equations can be distinguished into weak and strong forms. For the weak form we demonstrate explicitly that there are an infinite number of bifurcating branches emanating from a bifurcation point.</description><subject>645400 - High Energy Physics- Field Theory</subject><subject>CHARGE DENSITY</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>COULOMB FIELD</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>ELECTRIC FIELDS</subject><subject>EQUATIONS</subject><subject>Exact sciences and technology</subject><subject>FIELD EQUATIONS</subject><subject>GAUGE INVARIANCE</subject><subject>INVARIANCE PRINCIPLES</subject><subject>Physics</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>Theory of quantized fields</subject><subject>YANG-MILLS THEORY</subject><issn>0556-2821</issn><issn>1089-4918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNo9kL1PwzAQxS0EKqWwsyBFiIElxR-x44ylfEpFIAQDk-U6NjVKkzbngPrf49LSW06n93t3p4fQKcFDQjC7epmt4NV-3wyZGFJO8z3UJ1gWaVYQuY_6mHORUknJIToC-MKxqGA91CsKLjNB-2h07V3XGh18Uye-TsLMJh-6_kyffFVB4rytysQuuz8Akh8fZgmEOJkEmmi0cIwOnK7Anmz7AL3f3b6NH9LJ8_3jeDRJDeNZSEsuuMNaWMmoLElOGXZT6XBBM2yNYFzgklpe5k5jyaQ0LGNTrp3OOBFaOzZA55u9DQSvwPhgzcw0dW1NUIJELJcRutxAi7ZZdhaCmnswtqp0bZsOFJE8HixyziKKN6hpG4DWOrVo_Vy3K0WwWoer_sNVTKh1uNFytt3eTee23Bm2aUb9YqtrMLpyra6Nhx2WC0ZofPIXOwqCPw</recordid><startdate>19871015</startdate><enddate>19871015</enddate><creator>OH, C. H</creator><creator>PARWANI, R. R</creator><general>American Physical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>19871015</creationdate><title>Bifurcation in the Yang-Mills field equations with static sources</title><author>OH, C. H ; PARWANI, R. R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-d565f0a6e8328d17230fb8f09240ec63560d2e5d7fa08388c343b5afa4516aaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>645400 - High Energy Physics- Field Theory</topic><topic>CHARGE DENSITY</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>COULOMB FIELD</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>ELECTRIC FIELDS</topic><topic>EQUATIONS</topic><topic>Exact sciences and technology</topic><topic>FIELD EQUATIONS</topic><topic>GAUGE INVARIANCE</topic><topic>INVARIANCE PRINCIPLES</topic><topic>Physics</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>Theory of quantized fields</topic><topic>YANG-MILLS THEORY</topic><toplevel>online_resources</toplevel><creatorcontrib>OH, C. H</creatorcontrib><creatorcontrib>PARWANI, R. R</creatorcontrib><creatorcontrib>Physics Department, Faculty of Science, National University of Singapore, Kent Ridge, Singapore 0511, Republic of Singapore</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Phys. Rev. D; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>OH, C. H</au><au>PARWANI, R. R</au><aucorp>Physics Department, Faculty of Science, National University of Singapore, Kent Ridge, Singapore 0511, Republic of Singapore</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bifurcation in the Yang-Mills field equations with static sources</atitle><jtitle>Phys. Rev. D; (United States)</jtitle><addtitle>Phys Rev D Part Fields</addtitle><date>1987-10-15</date><risdate>1987</risdate><volume>36</volume><issue>8</issue><spage>2527</spage><epage>2531</epage><pages>2527-2531</pages><issn>0556-2821</issn><eissn>1089-4918</eissn><coden>PRVDAQ</coden><abstract>We argue that the bifurcation phenomenon in the Yang-Mills field equations can be distinguished into weak and strong forms. For the weak form we demonstrate explicitly that there are an infinite number of bifurcating branches emanating from a bifurcation point.</abstract><cop>Ridge, NY</cop><pub>American Physical Society</pub><pmid>9958462</pmid><doi>10.1103/PhysRevD.36.2527</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0556-2821
ispartof Phys. Rev. D; (United States), 1987-10, Vol.36 (8), p.2527-2531
issn 0556-2821
1089-4918
language eng
recordid cdi_proquest_miscellaneous_1859249753
source American Physical Society Journals
subjects 645400 - High Energy Physics- Field Theory
CHARGE DENSITY
Classical and quantum physics: mechanics and fields
COULOMB FIELD
DIFFERENTIAL EQUATIONS
ELECTRIC FIELDS
EQUATIONS
Exact sciences and technology
FIELD EQUATIONS
GAUGE INVARIANCE
INVARIANCE PRINCIPLES
Physics
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
Theory of quantized fields
YANG-MILLS THEORY
title Bifurcation in the Yang-Mills field equations with static sources
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T03%3A14%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bifurcation%20in%20the%20Yang-Mills%20field%20equations%20with%20static%20sources&rft.jtitle=Phys.%20Rev.%20D;%20(United%20States)&rft.au=OH,%20C.%20H&rft.aucorp=Physics%20Department,%20Faculty%20of%20Science,%20National%20University%20of%20Singapore,%20Kent%20Ridge,%20Singapore%200511,%20Republic%20of%20Singapore&rft.date=1987-10-15&rft.volume=36&rft.issue=8&rft.spage=2527&rft.epage=2531&rft.pages=2527-2531&rft.issn=0556-2821&rft.eissn=1089-4918&rft.coden=PRVDAQ&rft_id=info:doi/10.1103/PhysRevD.36.2527&rft_dat=%3Cproquest_osti_%3E1859249753%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859249753&rft_id=info:pmid/9958462&rfr_iscdi=true