Bifurcation in the Yang-Mills field equations with static sources
We argue that the bifurcation phenomenon in the Yang-Mills field equations can be distinguished into weak and strong forms. For the weak form we demonstrate explicitly that there are an infinite number of bifurcating branches emanating from a bifurcation point.
Gespeichert in:
Veröffentlicht in: | Phys. Rev. D; (United States) 1987-10, Vol.36 (8), p.2527-2531 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2531 |
---|---|
container_issue | 8 |
container_start_page | 2527 |
container_title | Phys. Rev. D; (United States) |
container_volume | 36 |
creator | OH, C. H PARWANI, R. R |
description | We argue that the bifurcation phenomenon in the Yang-Mills field equations can be distinguished into weak and strong forms. For the weak form we demonstrate explicitly that there are an infinite number of bifurcating branches emanating from a bifurcation point. |
doi_str_mv | 10.1103/PhysRevD.36.2527 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1859249753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859249753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-d565f0a6e8328d17230fb8f09240ec63560d2e5d7fa08388c343b5afa4516aaf3</originalsourceid><addsrcrecordid>eNo9kL1PwzAQxS0EKqWwsyBFiIElxR-x44ylfEpFIAQDk-U6NjVKkzbngPrf49LSW06n93t3p4fQKcFDQjC7epmt4NV-3wyZGFJO8z3UJ1gWaVYQuY_6mHORUknJIToC-MKxqGA91CsKLjNB-2h07V3XGh18Uye-TsLMJh-6_kyffFVB4rytysQuuz8Akh8fZgmEOJkEmmi0cIwOnK7Anmz7AL3f3b6NH9LJ8_3jeDRJDeNZSEsuuMNaWMmoLElOGXZT6XBBM2yNYFzgklpe5k5jyaQ0LGNTrp3OOBFaOzZA55u9DQSvwPhgzcw0dW1NUIJELJcRutxAi7ZZdhaCmnswtqp0bZsOFJE8HixyziKKN6hpG4DWOrVo_Vy3K0WwWoer_sNVTKh1uNFytt3eTee23Bm2aUb9YqtrMLpyra6Nhx2WC0ZofPIXOwqCPw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859249753</pqid></control><display><type>article</type><title>Bifurcation in the Yang-Mills field equations with static sources</title><source>American Physical Society Journals</source><creator>OH, C. H ; PARWANI, R. R</creator><creatorcontrib>OH, C. H ; PARWANI, R. R ; Physics Department, Faculty of Science, National University of Singapore, Kent Ridge, Singapore 0511, Republic of Singapore</creatorcontrib><description>We argue that the bifurcation phenomenon in the Yang-Mills field equations can be distinguished into weak and strong forms. For the weak form we demonstrate explicitly that there are an infinite number of bifurcating branches emanating from a bifurcation point.</description><identifier>ISSN: 0556-2821</identifier><identifier>EISSN: 1089-4918</identifier><identifier>DOI: 10.1103/PhysRevD.36.2527</identifier><identifier>PMID: 9958462</identifier><identifier>CODEN: PRVDAQ</identifier><language>eng</language><publisher>Ridge, NY: American Physical Society</publisher><subject>645400 - High Energy Physics- Field Theory ; CHARGE DENSITY ; Classical and quantum physics: mechanics and fields ; COULOMB FIELD ; DIFFERENTIAL EQUATIONS ; ELECTRIC FIELDS ; EQUATIONS ; Exact sciences and technology ; FIELD EQUATIONS ; GAUGE INVARIANCE ; INVARIANCE PRINCIPLES ; Physics ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; Theory of quantized fields ; YANG-MILLS THEORY</subject><ispartof>Phys. Rev. D; (United States), 1987-10, Vol.36 (8), p.2527-2531</ispartof><rights>1988 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-d565f0a6e8328d17230fb8f09240ec63560d2e5d7fa08388c343b5afa4516aaf3</citedby><cites>FETCH-LOGICAL-c354t-d565f0a6e8328d17230fb8f09240ec63560d2e5d7fa08388c343b5afa4516aaf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7631278$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9958462$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6145178$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>OH, C. H</creatorcontrib><creatorcontrib>PARWANI, R. R</creatorcontrib><creatorcontrib>Physics Department, Faculty of Science, National University of Singapore, Kent Ridge, Singapore 0511, Republic of Singapore</creatorcontrib><title>Bifurcation in the Yang-Mills field equations with static sources</title><title>Phys. Rev. D; (United States)</title><addtitle>Phys Rev D Part Fields</addtitle><description>We argue that the bifurcation phenomenon in the Yang-Mills field equations can be distinguished into weak and strong forms. For the weak form we demonstrate explicitly that there are an infinite number of bifurcating branches emanating from a bifurcation point.</description><subject>645400 - High Energy Physics- Field Theory</subject><subject>CHARGE DENSITY</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>COULOMB FIELD</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>ELECTRIC FIELDS</subject><subject>EQUATIONS</subject><subject>Exact sciences and technology</subject><subject>FIELD EQUATIONS</subject><subject>GAUGE INVARIANCE</subject><subject>INVARIANCE PRINCIPLES</subject><subject>Physics</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>Theory of quantized fields</subject><subject>YANG-MILLS THEORY</subject><issn>0556-2821</issn><issn>1089-4918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNo9kL1PwzAQxS0EKqWwsyBFiIElxR-x44ylfEpFIAQDk-U6NjVKkzbngPrf49LSW06n93t3p4fQKcFDQjC7epmt4NV-3wyZGFJO8z3UJ1gWaVYQuY_6mHORUknJIToC-MKxqGA91CsKLjNB-2h07V3XGh18Uye-TsLMJh-6_kyffFVB4rytysQuuz8Akh8fZgmEOJkEmmi0cIwOnK7Anmz7AL3f3b6NH9LJ8_3jeDRJDeNZSEsuuMNaWMmoLElOGXZT6XBBM2yNYFzgklpe5k5jyaQ0LGNTrp3OOBFaOzZA55u9DQSvwPhgzcw0dW1NUIJELJcRutxAi7ZZdhaCmnswtqp0bZsOFJE8HixyziKKN6hpG4DWOrVo_Vy3K0WwWoer_sNVTKh1uNFytt3eTee23Bm2aUb9YqtrMLpyra6Nhx2WC0ZofPIXOwqCPw</recordid><startdate>19871015</startdate><enddate>19871015</enddate><creator>OH, C. H</creator><creator>PARWANI, R. R</creator><general>American Physical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>19871015</creationdate><title>Bifurcation in the Yang-Mills field equations with static sources</title><author>OH, C. H ; PARWANI, R. R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-d565f0a6e8328d17230fb8f09240ec63560d2e5d7fa08388c343b5afa4516aaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>645400 - High Energy Physics- Field Theory</topic><topic>CHARGE DENSITY</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>COULOMB FIELD</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>ELECTRIC FIELDS</topic><topic>EQUATIONS</topic><topic>Exact sciences and technology</topic><topic>FIELD EQUATIONS</topic><topic>GAUGE INVARIANCE</topic><topic>INVARIANCE PRINCIPLES</topic><topic>Physics</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>Theory of quantized fields</topic><topic>YANG-MILLS THEORY</topic><toplevel>online_resources</toplevel><creatorcontrib>OH, C. H</creatorcontrib><creatorcontrib>PARWANI, R. R</creatorcontrib><creatorcontrib>Physics Department, Faculty of Science, National University of Singapore, Kent Ridge, Singapore 0511, Republic of Singapore</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Phys. Rev. D; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>OH, C. H</au><au>PARWANI, R. R</au><aucorp>Physics Department, Faculty of Science, National University of Singapore, Kent Ridge, Singapore 0511, Republic of Singapore</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bifurcation in the Yang-Mills field equations with static sources</atitle><jtitle>Phys. Rev. D; (United States)</jtitle><addtitle>Phys Rev D Part Fields</addtitle><date>1987-10-15</date><risdate>1987</risdate><volume>36</volume><issue>8</issue><spage>2527</spage><epage>2531</epage><pages>2527-2531</pages><issn>0556-2821</issn><eissn>1089-4918</eissn><coden>PRVDAQ</coden><abstract>We argue that the bifurcation phenomenon in the Yang-Mills field equations can be distinguished into weak and strong forms. For the weak form we demonstrate explicitly that there are an infinite number of bifurcating branches emanating from a bifurcation point.</abstract><cop>Ridge, NY</cop><pub>American Physical Society</pub><pmid>9958462</pmid><doi>10.1103/PhysRevD.36.2527</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0556-2821 |
ispartof | Phys. Rev. D; (United States), 1987-10, Vol.36 (8), p.2527-2531 |
issn | 0556-2821 1089-4918 |
language | eng |
recordid | cdi_proquest_miscellaneous_1859249753 |
source | American Physical Society Journals |
subjects | 645400 - High Energy Physics- Field Theory CHARGE DENSITY Classical and quantum physics: mechanics and fields COULOMB FIELD DIFFERENTIAL EQUATIONS ELECTRIC FIELDS EQUATIONS Exact sciences and technology FIELD EQUATIONS GAUGE INVARIANCE INVARIANCE PRINCIPLES Physics PHYSICS OF ELEMENTARY PARTICLES AND FIELDS Theory of quantized fields YANG-MILLS THEORY |
title | Bifurcation in the Yang-Mills field equations with static sources |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T03%3A14%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bifurcation%20in%20the%20Yang-Mills%20field%20equations%20with%20static%20sources&rft.jtitle=Phys.%20Rev.%20D;%20(United%20States)&rft.au=OH,%20C.%20H&rft.aucorp=Physics%20Department,%20Faculty%20of%20Science,%20National%20University%20of%20Singapore,%20Kent%20Ridge,%20Singapore%200511,%20Republic%20of%20Singapore&rft.date=1987-10-15&rft.volume=36&rft.issue=8&rft.spage=2527&rft.epage=2531&rft.pages=2527-2531&rft.issn=0556-2821&rft.eissn=1089-4918&rft.coden=PRVDAQ&rft_id=info:doi/10.1103/PhysRevD.36.2527&rft_dat=%3Cproquest_osti_%3E1859249753%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859249753&rft_id=info:pmid/9958462&rfr_iscdi=true |