Transitions to Bubbling of Chaotic Systems

Certain dynamical systems (e.g., synchronized chaotic oscillators) exhibit a phenomenon called bubbling, whereby small perturbations induce intermittent bursting. In this Letter we show that, as a parameter is varied through a critical value, the transition to bubbling can be {open_quote}{open_quote...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical Review Letters 1996-12, Vol.77 (27), p.5361-5364
Hauptverfasser: Venkataramani, SC, Hunt, BR, Ott, E, Gauthier, DJ, Bienfang, JC
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Certain dynamical systems (e.g., synchronized chaotic oscillators) exhibit a phenomenon called bubbling, whereby small perturbations induce intermittent bursting. In this Letter we show that, as a parameter is varied through a critical value, the transition to bubbling can be {open_quote}{open_quote}hard{close_quote}{close_quote} (the bursts appear abruptly with large amplitude) or {open_quote}{open_quote}soft{close_quote}{close_quote} (the maximum burst amplitude increases continuously from zero), and that the presence or absence of symmetry in the unperturbed system has a fundamental effect on these transitions. These results are confirmed by numerical and physical experiments. {copyright} {ital 1996 The American Physical Society.}
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.77.5361