Transitions to Bubbling of Chaotic Systems
Certain dynamical systems (e.g., synchronized chaotic oscillators) exhibit a phenomenon called bubbling, whereby small perturbations induce intermittent bursting. In this Letter we show that, as a parameter is varied through a critical value, the transition to bubbling can be {open_quote}{open_quote...
Gespeichert in:
Veröffentlicht in: | Physical Review Letters 1996-12, Vol.77 (27), p.5361-5364 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Certain dynamical systems (e.g., synchronized chaotic oscillators) exhibit a phenomenon called bubbling, whereby small perturbations induce intermittent bursting. In this Letter we show that, as a parameter is varied through a critical value, the transition to bubbling can be {open_quote}{open_quote}hard{close_quote}{close_quote} (the bursts appear abruptly with large amplitude) or {open_quote}{open_quote}soft{close_quote}{close_quote} (the maximum burst amplitude increases continuously from zero), and that the presence or absence of symmetry in the unperturbed system has a fundamental effect on these transitions. These results are confirmed by numerical and physical experiments. {copyright} {ital 1996 The American Physical Society.} |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.77.5361 |