Relativistic numerical model for close neutron-star binaries

We describe a numerical method for calculating the (3+1)-dimensional general relativistic hydrodynamics of a coalescing neutron-star binary system. The relativistic field equations are solved at each time slice with a spatial three-metric chosen to be conformally flat. Against this solution to the g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical Review, D D, 1996-07, Vol.54 (2), p.1317-1331
Hauptverfasser: Wilson, JR, Mathews, GJ, Marronetti, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1331
container_issue 2
container_start_page 1317
container_title Physical Review, D
container_volume 54
creator Wilson, JR
Mathews, GJ
Marronetti, P
description We describe a numerical method for calculating the (3+1)-dimensional general relativistic hydrodynamics of a coalescing neutron-star binary system. The relativistic field equations are solved at each time slice with a spatial three-metric chosen to be conformally flat. Against this solution to the general relativistic field equations, the hydrodynamic variables and gravitational radiation are allowed to respond. The gravitational radiation signal is derived via a multipole expansion of the metric perturbation to the hexadecapole ({ital l}=4) order including both mass and current moments and a correction for the slow-motion approximation. Using this expansion, the effect of gravitational radiation on the system evolution can also be recovered by introducing an acceleration term in the matter evolution. In the present work we illustrate the method by applying this model to evaluate various orbits of two neutron stars with a gravitational mass of 1.45{ital M}{sub {circle_dot}} near the time of the final merger. We discuss the evidence that, for a realistic neutron-star equation of state, general relativistic effects may cause the stars to individually collapse into black holes prior to merging. Also, the strong fields cause the last stable orbit to occur at a larger separation distance and lower frequency than previously estimated. {copyright} {ital 1996 The American Physical Society.}
doi_str_mv 10.1103/PhysRevD.54.1317
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1859238887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859238887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-76dbd631fb26d1939572b52d0968d7861d1f5708c8dee8854f9b907e790dd82e3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMotlbvnmS9edmaj002AS9SP6GgFD2H3WSWRnY3mmQL_fduaQXnMnN43pfhQeiS4DkhmN2-r7dxBZuHOS_mhJHyCE0JliovFJHHaIo5FzmVlEzQWYxfeBwq2CmakPHAEqspultBWyW3cTE5k_VDB8GZqs06b6HNGh8y0_oIWQ9DCr7PY6pCVru-Cg7iOTppqjbCxWHP0OfT48fiJV--Pb8u7pe5YYKnvBS2toKRpqbCEsUUL2nNqcVKSFtKQSxpeImlkRZASl40qla4hFJhayUFNkPX-14_fqmjcQnM2vi-B5M0lYLScmRu9sx38D8DxKQ7Fw20bdWDH6ImkivKpJQ7FO9RE3yMARr9HVxXha0mWO-86j-vmhd653WMXB3ah7oD-y-wF8l-AXFCdDg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859238887</pqid></control><display><type>article</type><title>Relativistic numerical model for close neutron-star binaries</title><source>American Physical Society Journals</source><creator>Wilson, JR ; Mathews, GJ ; Marronetti, P</creator><creatorcontrib>Wilson, JR ; Mathews, GJ ; Marronetti, P</creatorcontrib><description>We describe a numerical method for calculating the (3+1)-dimensional general relativistic hydrodynamics of a coalescing neutron-star binary system. The relativistic field equations are solved at each time slice with a spatial three-metric chosen to be conformally flat. Against this solution to the general relativistic field equations, the hydrodynamic variables and gravitational radiation are allowed to respond. The gravitational radiation signal is derived via a multipole expansion of the metric perturbation to the hexadecapole ({ital l}=4) order including both mass and current moments and a correction for the slow-motion approximation. Using this expansion, the effect of gravitational radiation on the system evolution can also be recovered by introducing an acceleration term in the matter evolution. In the present work we illustrate the method by applying this model to evaluate various orbits of two neutron stars with a gravitational mass of 1.45{ital M}{sub {circle_dot}} near the time of the final merger. We discuss the evidence that, for a realistic neutron-star equation of state, general relativistic effects may cause the stars to individually collapse into black holes prior to merging. Also, the strong fields cause the last stable orbit to occur at a larger separation distance and lower frequency than previously estimated. {copyright} {ital 1996 The American Physical Society.}</description><identifier>ISSN: 0556-2821</identifier><identifier>EISSN: 1089-4918</identifier><identifier>DOI: 10.1103/PhysRevD.54.1317</identifier><identifier>PMID: 10020809</identifier><language>eng</language><publisher>United States</publisher><subject>BINARY STARS ; BLACK HOLES ; EQUATIONS OF STATE ; FIELD EQUATIONS ; FOUR-DIMENSIONAL CALCULATIONS ; GENERAL RELATIVITY THEORY ; GRAVITATIONAL RADIATION ; HEXADECAPOLES ; MULTIPOLES ; NEUTRON STARS ; NUMERICAL ANALYSIS ; PHYSICS ; SIGNALS</subject><ispartof>Physical Review, D, 1996-07, Vol.54 (2), p.1317-1331</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-76dbd631fb26d1939572b52d0968d7861d1f5708c8dee8854f9b907e790dd82e3</citedby><cites>FETCH-LOGICAL-c365t-76dbd631fb26d1939572b52d0968d7861d1f5708c8dee8854f9b907e790dd82e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10020809$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/286227$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilson, JR</creatorcontrib><creatorcontrib>Mathews, GJ</creatorcontrib><creatorcontrib>Marronetti, P</creatorcontrib><title>Relativistic numerical model for close neutron-star binaries</title><title>Physical Review, D</title><addtitle>Phys Rev D Part Fields</addtitle><description>We describe a numerical method for calculating the (3+1)-dimensional general relativistic hydrodynamics of a coalescing neutron-star binary system. The relativistic field equations are solved at each time slice with a spatial three-metric chosen to be conformally flat. Against this solution to the general relativistic field equations, the hydrodynamic variables and gravitational radiation are allowed to respond. The gravitational radiation signal is derived via a multipole expansion of the metric perturbation to the hexadecapole ({ital l}=4) order including both mass and current moments and a correction for the slow-motion approximation. Using this expansion, the effect of gravitational radiation on the system evolution can also be recovered by introducing an acceleration term in the matter evolution. In the present work we illustrate the method by applying this model to evaluate various orbits of two neutron stars with a gravitational mass of 1.45{ital M}{sub {circle_dot}} near the time of the final merger. We discuss the evidence that, for a realistic neutron-star equation of state, general relativistic effects may cause the stars to individually collapse into black holes prior to merging. Also, the strong fields cause the last stable orbit to occur at a larger separation distance and lower frequency than previously estimated. {copyright} {ital 1996 The American Physical Society.}</description><subject>BINARY STARS</subject><subject>BLACK HOLES</subject><subject>EQUATIONS OF STATE</subject><subject>FIELD EQUATIONS</subject><subject>FOUR-DIMENSIONAL CALCULATIONS</subject><subject>GENERAL RELATIVITY THEORY</subject><subject>GRAVITATIONAL RADIATION</subject><subject>HEXADECAPOLES</subject><subject>MULTIPOLES</subject><subject>NEUTRON STARS</subject><subject>NUMERICAL ANALYSIS</subject><subject>PHYSICS</subject><subject>SIGNALS</subject><issn>0556-2821</issn><issn>1089-4918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEQhoMotlbvnmS9edmaj002AS9SP6GgFD2H3WSWRnY3mmQL_fduaQXnMnN43pfhQeiS4DkhmN2-r7dxBZuHOS_mhJHyCE0JliovFJHHaIo5FzmVlEzQWYxfeBwq2CmakPHAEqspultBWyW3cTE5k_VDB8GZqs06b6HNGh8y0_oIWQ9DCr7PY6pCVru-Cg7iOTppqjbCxWHP0OfT48fiJV--Pb8u7pe5YYKnvBS2toKRpqbCEsUUL2nNqcVKSFtKQSxpeImlkRZASl40qla4hFJhayUFNkPX-14_fqmjcQnM2vi-B5M0lYLScmRu9sx38D8DxKQ7Fw20bdWDH6ImkivKpJQ7FO9RE3yMARr9HVxXha0mWO-86j-vmhd653WMXB3ah7oD-y-wF8l-AXFCdDg</recordid><startdate>19960715</startdate><enddate>19960715</enddate><creator>Wilson, JR</creator><creator>Mathews, GJ</creator><creator>Marronetti, P</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>19960715</creationdate><title>Relativistic numerical model for close neutron-star binaries</title><author>Wilson, JR ; Mathews, GJ ; Marronetti, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-76dbd631fb26d1939572b52d0968d7861d1f5708c8dee8854f9b907e790dd82e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>BINARY STARS</topic><topic>BLACK HOLES</topic><topic>EQUATIONS OF STATE</topic><topic>FIELD EQUATIONS</topic><topic>FOUR-DIMENSIONAL CALCULATIONS</topic><topic>GENERAL RELATIVITY THEORY</topic><topic>GRAVITATIONAL RADIATION</topic><topic>HEXADECAPOLES</topic><topic>MULTIPOLES</topic><topic>NEUTRON STARS</topic><topic>NUMERICAL ANALYSIS</topic><topic>PHYSICS</topic><topic>SIGNALS</topic><toplevel>online_resources</toplevel><creatorcontrib>Wilson, JR</creatorcontrib><creatorcontrib>Mathews, GJ</creatorcontrib><creatorcontrib>Marronetti, P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical Review, D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilson, JR</au><au>Mathews, GJ</au><au>Marronetti, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relativistic numerical model for close neutron-star binaries</atitle><jtitle>Physical Review, D</jtitle><addtitle>Phys Rev D Part Fields</addtitle><date>1996-07-15</date><risdate>1996</risdate><volume>54</volume><issue>2</issue><spage>1317</spage><epage>1331</epage><pages>1317-1331</pages><issn>0556-2821</issn><eissn>1089-4918</eissn><abstract>We describe a numerical method for calculating the (3+1)-dimensional general relativistic hydrodynamics of a coalescing neutron-star binary system. The relativistic field equations are solved at each time slice with a spatial three-metric chosen to be conformally flat. Against this solution to the general relativistic field equations, the hydrodynamic variables and gravitational radiation are allowed to respond. The gravitational radiation signal is derived via a multipole expansion of the metric perturbation to the hexadecapole ({ital l}=4) order including both mass and current moments and a correction for the slow-motion approximation. Using this expansion, the effect of gravitational radiation on the system evolution can also be recovered by introducing an acceleration term in the matter evolution. In the present work we illustrate the method by applying this model to evaluate various orbits of two neutron stars with a gravitational mass of 1.45{ital M}{sub {circle_dot}} near the time of the final merger. We discuss the evidence that, for a realistic neutron-star equation of state, general relativistic effects may cause the stars to individually collapse into black holes prior to merging. Also, the strong fields cause the last stable orbit to occur at a larger separation distance and lower frequency than previously estimated. {copyright} {ital 1996 The American Physical Society.}</abstract><cop>United States</cop><pmid>10020809</pmid><doi>10.1103/PhysRevD.54.1317</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0556-2821
ispartof Physical Review, D, 1996-07, Vol.54 (2), p.1317-1331
issn 0556-2821
1089-4918
language eng
recordid cdi_proquest_miscellaneous_1859238887
source American Physical Society Journals
subjects BINARY STARS
BLACK HOLES
EQUATIONS OF STATE
FIELD EQUATIONS
FOUR-DIMENSIONAL CALCULATIONS
GENERAL RELATIVITY THEORY
GRAVITATIONAL RADIATION
HEXADECAPOLES
MULTIPOLES
NEUTRON STARS
NUMERICAL ANALYSIS
PHYSICS
SIGNALS
title Relativistic numerical model for close neutron-star binaries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A08%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relativistic%20numerical%20model%20for%20close%20neutron-star%20binaries&rft.jtitle=Physical%20Review,%20D&rft.au=Wilson,%20JR&rft.date=1996-07-15&rft.volume=54&rft.issue=2&rft.spage=1317&rft.epage=1331&rft.pages=1317-1331&rft.issn=0556-2821&rft.eissn=1089-4918&rft_id=info:doi/10.1103/PhysRevD.54.1317&rft_dat=%3Cproquest_osti_%3E1859238887%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859238887&rft_id=info:pmid/10020809&rfr_iscdi=true