Generalized proof of a mass-monopole criterion

A proof is presented demonstrating the general applicability of a formalism, developed in a previous paper, that is of theoretical significance to the Einstein-Infeld-Hoffmann approach to equations of motion in general relativity. This formalism, utilizing the scalar invariants of a vacuum gravitati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Phys. Rev. D; (United States) 1986-03, Vol.33 (6), p.1538-1546
1. Verfasser: SCHLEIFER, N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1546
container_issue 6
container_start_page 1538
container_title Phys. Rev. D; (United States)
container_volume 33
creator SCHLEIFER, N
description A proof is presented demonstrating the general applicability of a formalism, developed in a previous paper, that is of theoretical significance to the Einstein-Infeld-Hoffmann approach to equations of motion in general relativity. This formalism, utilizing the scalar invariants of a vacuum gravitational field, allows one to determine the mass-monopole characteristics of a source perturbed by an arbitrary stress-energy distribution, by analyzing only its surrounding field. The proof utilizes the Regge-Wheeler-Zerilli method of tensor spherical harmonic decomposition of perturbations of a Schwarzschild background. It is concluded that a generalization of our formalism to a more complex source structure (as well as a proof that does not need to resort to any approximation procedures) must await a deeper understanding of the global properties of the eigenvalues of the Riemann curvature tensor.
doi_str_mv 10.1103/PhysRevD.33.1538
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1859208611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859208611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-2410e8a4822bbefe113f4a729fdbc4ee659f663cf764413e74195048f2380b233</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMotVbvXoQiHrzsmq_NJkepWoWCInoO2XRCV3Y3NdkK9a83pWuHgTnM770ZHkKXBOeEYHb3ttrGd_h5yBnLScHkERoTLFXGFZHHaIyLQmRUUnKKzmL8wqmoYCM0UqoQpVJjlM-hg2Ca-heW03Xw3k1Tm2lrYsxa3_m1b2BqQ91DqH13jk6caSJcDHOCPp8eP2bP2eJ1_jK7X2SW4bLPKCcYpOGS0qoCB4Qwx01JlVtWlgOIQjkhmHWl4JwwKDlRBebSUSZxRRmboOu9r499raNN5-3K-q4D2-tCUUaETNDtHkp_f28g9rqto4WmMR34TdREJhJLka5PEN6jNvgYAzi9DnVrwlYTrHdJ6v8kNWN6l2SSXA3um6qF5UEwRJf2N8PeRGsaF0xn63jASqlkgUv2BxDcevU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859208611</pqid></control><display><type>article</type><title>Generalized proof of a mass-monopole criterion</title><source>American Physical Society Journals</source><creator>SCHLEIFER, N</creator><creatorcontrib>SCHLEIFER, N ; Department of Physics, Seton Hall University, South Orange, New Jersey 07079</creatorcontrib><description>A proof is presented demonstrating the general applicability of a formalism, developed in a previous paper, that is of theoretical significance to the Einstein-Infeld-Hoffmann approach to equations of motion in general relativity. This formalism, utilizing the scalar invariants of a vacuum gravitational field, allows one to determine the mass-monopole characteristics of a source perturbed by an arbitrary stress-energy distribution, by analyzing only its surrounding field. The proof utilizes the Regge-Wheeler-Zerilli method of tensor spherical harmonic decomposition of perturbations of a Schwarzschild background. It is concluded that a generalization of our formalism to a more complex source structure (as well as a proof that does not need to resort to any approximation procedures) must await a deeper understanding of the global properties of the eigenvalues of the Riemann curvature tensor.</description><identifier>ISSN: 0556-2821</identifier><identifier>EISSN: 1089-4918</identifier><identifier>DOI: 10.1103/PhysRevD.33.1538</identifier><identifier>PMID: 9956799</identifier><identifier>CODEN: PRVDAQ</identifier><language>eng</language><publisher>Ridge, NY: American Physical Society</publisher><subject>657003 - Theoretical &amp; Mathematical Physics- Relativity &amp; Gravitation ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Classical general relativity ; DIFFERENTIAL EQUATIONS ; EINSTEIN FIELD EQUATIONS ; EQUATIONS ; EQUATIONS OF MOTION ; Exact sciences and technology ; FIELD EQUATIONS ; FIELD THEORIES ; General relativity and gravitation ; GENERAL RELATIVITY THEORY ; MATHEMATICAL SPACE ; MATTER ; PARTIAL DIFFERENTIAL EQUATIONS ; Physics ; RIEMANN SPACE ; SINGULARITY ; SPACE ; SYMMETRY GROUPS</subject><ispartof>Phys. Rev. D; (United States), 1986-03, Vol.33 (6), p.1538-1546</ispartof><rights>1987 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c307t-2410e8a4822bbefe113f4a729fdbc4ee659f663cf764413e74195048f2380b233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,2874,2875,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7898507$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9956799$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5923168$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>SCHLEIFER, N</creatorcontrib><creatorcontrib>Department of Physics, Seton Hall University, South Orange, New Jersey 07079</creatorcontrib><title>Generalized proof of a mass-monopole criterion</title><title>Phys. Rev. D; (United States)</title><addtitle>Phys Rev D Part Fields</addtitle><description>A proof is presented demonstrating the general applicability of a formalism, developed in a previous paper, that is of theoretical significance to the Einstein-Infeld-Hoffmann approach to equations of motion in general relativity. This formalism, utilizing the scalar invariants of a vacuum gravitational field, allows one to determine the mass-monopole characteristics of a source perturbed by an arbitrary stress-energy distribution, by analyzing only its surrounding field. The proof utilizes the Regge-Wheeler-Zerilli method of tensor spherical harmonic decomposition of perturbations of a Schwarzschild background. It is concluded that a generalization of our formalism to a more complex source structure (as well as a proof that does not need to resort to any approximation procedures) must await a deeper understanding of the global properties of the eigenvalues of the Riemann curvature tensor.</description><subject>657003 - Theoretical &amp; Mathematical Physics- Relativity &amp; Gravitation</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Classical general relativity</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>EINSTEIN FIELD EQUATIONS</subject><subject>EQUATIONS</subject><subject>EQUATIONS OF MOTION</subject><subject>Exact sciences and technology</subject><subject>FIELD EQUATIONS</subject><subject>FIELD THEORIES</subject><subject>General relativity and gravitation</subject><subject>GENERAL RELATIVITY THEORY</subject><subject>MATHEMATICAL SPACE</subject><subject>MATTER</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>Physics</subject><subject>RIEMANN SPACE</subject><subject>SINGULARITY</subject><subject>SPACE</subject><subject>SYMMETRY GROUPS</subject><issn>0556-2821</issn><issn>1089-4918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LAzEQxYMotVbvXoQiHrzsmq_NJkepWoWCInoO2XRCV3Y3NdkK9a83pWuHgTnM770ZHkKXBOeEYHb3ttrGd_h5yBnLScHkERoTLFXGFZHHaIyLQmRUUnKKzmL8wqmoYCM0UqoQpVJjlM-hg2Ca-heW03Xw3k1Tm2lrYsxa3_m1b2BqQ91DqH13jk6caSJcDHOCPp8eP2bP2eJ1_jK7X2SW4bLPKCcYpOGS0qoCB4Qwx01JlVtWlgOIQjkhmHWl4JwwKDlRBebSUSZxRRmboOu9r499raNN5-3K-q4D2-tCUUaETNDtHkp_f28g9rqto4WmMR34TdREJhJLka5PEN6jNvgYAzi9DnVrwlYTrHdJ6v8kNWN6l2SSXA3um6qF5UEwRJf2N8PeRGsaF0xn63jASqlkgUv2BxDcevU</recordid><startdate>19860315</startdate><enddate>19860315</enddate><creator>SCHLEIFER, N</creator><general>American Physical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>19860315</creationdate><title>Generalized proof of a mass-monopole criterion</title><author>SCHLEIFER, N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-2410e8a4822bbefe113f4a729fdbc4ee659f663cf764413e74195048f2380b233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>657003 - Theoretical &amp; Mathematical Physics- Relativity &amp; Gravitation</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Classical general relativity</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>EINSTEIN FIELD EQUATIONS</topic><topic>EQUATIONS</topic><topic>EQUATIONS OF MOTION</topic><topic>Exact sciences and technology</topic><topic>FIELD EQUATIONS</topic><topic>FIELD THEORIES</topic><topic>General relativity and gravitation</topic><topic>GENERAL RELATIVITY THEORY</topic><topic>MATHEMATICAL SPACE</topic><topic>MATTER</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>Physics</topic><topic>RIEMANN SPACE</topic><topic>SINGULARITY</topic><topic>SPACE</topic><topic>SYMMETRY GROUPS</topic><toplevel>online_resources</toplevel><creatorcontrib>SCHLEIFER, N</creatorcontrib><creatorcontrib>Department of Physics, Seton Hall University, South Orange, New Jersey 07079</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Phys. Rev. D; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SCHLEIFER, N</au><aucorp>Department of Physics, Seton Hall University, South Orange, New Jersey 07079</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized proof of a mass-monopole criterion</atitle><jtitle>Phys. Rev. D; (United States)</jtitle><addtitle>Phys Rev D Part Fields</addtitle><date>1986-03-15</date><risdate>1986</risdate><volume>33</volume><issue>6</issue><spage>1538</spage><epage>1546</epage><pages>1538-1546</pages><issn>0556-2821</issn><eissn>1089-4918</eissn><coden>PRVDAQ</coden><abstract>A proof is presented demonstrating the general applicability of a formalism, developed in a previous paper, that is of theoretical significance to the Einstein-Infeld-Hoffmann approach to equations of motion in general relativity. This formalism, utilizing the scalar invariants of a vacuum gravitational field, allows one to determine the mass-monopole characteristics of a source perturbed by an arbitrary stress-energy distribution, by analyzing only its surrounding field. The proof utilizes the Regge-Wheeler-Zerilli method of tensor spherical harmonic decomposition of perturbations of a Schwarzschild background. It is concluded that a generalization of our formalism to a more complex source structure (as well as a proof that does not need to resort to any approximation procedures) must await a deeper understanding of the global properties of the eigenvalues of the Riemann curvature tensor.</abstract><cop>Ridge, NY</cop><pub>American Physical Society</pub><pmid>9956799</pmid><doi>10.1103/PhysRevD.33.1538</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0556-2821
ispartof Phys. Rev. D; (United States), 1986-03, Vol.33 (6), p.1538-1546
issn 0556-2821
1089-4918
language eng
recordid cdi_proquest_miscellaneous_1859208611
source American Physical Society Journals
subjects 657003 - Theoretical & Mathematical Physics- Relativity & Gravitation
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Classical general relativity
DIFFERENTIAL EQUATIONS
EINSTEIN FIELD EQUATIONS
EQUATIONS
EQUATIONS OF MOTION
Exact sciences and technology
FIELD EQUATIONS
FIELD THEORIES
General relativity and gravitation
GENERAL RELATIVITY THEORY
MATHEMATICAL SPACE
MATTER
PARTIAL DIFFERENTIAL EQUATIONS
Physics
RIEMANN SPACE
SINGULARITY
SPACE
SYMMETRY GROUPS
title Generalized proof of a mass-monopole criterion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A11%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20proof%20of%20a%20mass-monopole%20criterion&rft.jtitle=Phys.%20Rev.%20D;%20(United%20States)&rft.au=SCHLEIFER,%20N&rft.aucorp=Department%20of%20Physics,%20Seton%20Hall%20University,%20South%20Orange,%20New%20Jersey%2007079&rft.date=1986-03-15&rft.volume=33&rft.issue=6&rft.spage=1538&rft.epage=1546&rft.pages=1538-1546&rft.issn=0556-2821&rft.eissn=1089-4918&rft.coden=PRVDAQ&rft_id=info:doi/10.1103/PhysRevD.33.1538&rft_dat=%3Cproquest_osti_%3E1859208611%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859208611&rft_id=info:pmid/9956799&rfr_iscdi=true