Generalized proof of a mass-monopole criterion
A proof is presented demonstrating the general applicability of a formalism, developed in a previous paper, that is of theoretical significance to the Einstein-Infeld-Hoffmann approach to equations of motion in general relativity. This formalism, utilizing the scalar invariants of a vacuum gravitati...
Gespeichert in:
Veröffentlicht in: | Phys. Rev. D; (United States) 1986-03, Vol.33 (6), p.1538-1546 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1546 |
---|---|
container_issue | 6 |
container_start_page | 1538 |
container_title | Phys. Rev. D; (United States) |
container_volume | 33 |
creator | SCHLEIFER, N |
description | A proof is presented demonstrating the general applicability of a formalism, developed in a previous paper, that is of theoretical significance to the Einstein-Infeld-Hoffmann approach to equations of motion in general relativity. This formalism, utilizing the scalar invariants of a vacuum gravitational field, allows one to determine the mass-monopole characteristics of a source perturbed by an arbitrary stress-energy distribution, by analyzing only its surrounding field. The proof utilizes the Regge-Wheeler-Zerilli method of tensor spherical harmonic decomposition of perturbations of a Schwarzschild background. It is concluded that a generalization of our formalism to a more complex source structure (as well as a proof that does not need to resort to any approximation procedures) must await a deeper understanding of the global properties of the eigenvalues of the Riemann curvature tensor. |
doi_str_mv | 10.1103/PhysRevD.33.1538 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1859208611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859208611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-2410e8a4822bbefe113f4a729fdbc4ee659f663cf764413e74195048f2380b233</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMotVbvXoQiHrzsmq_NJkepWoWCInoO2XRCV3Y3NdkK9a83pWuHgTnM770ZHkKXBOeEYHb3ttrGd_h5yBnLScHkERoTLFXGFZHHaIyLQmRUUnKKzmL8wqmoYCM0UqoQpVJjlM-hg2Ca-heW03Xw3k1Tm2lrYsxa3_m1b2BqQ91DqH13jk6caSJcDHOCPp8eP2bP2eJ1_jK7X2SW4bLPKCcYpOGS0qoCB4Qwx01JlVtWlgOIQjkhmHWl4JwwKDlRBebSUSZxRRmboOu9r499raNN5-3K-q4D2-tCUUaETNDtHkp_f28g9rqto4WmMR34TdREJhJLka5PEN6jNvgYAzi9DnVrwlYTrHdJ6v8kNWN6l2SSXA3um6qF5UEwRJf2N8PeRGsaF0xn63jASqlkgUv2BxDcevU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859208611</pqid></control><display><type>article</type><title>Generalized proof of a mass-monopole criterion</title><source>American Physical Society Journals</source><creator>SCHLEIFER, N</creator><creatorcontrib>SCHLEIFER, N ; Department of Physics, Seton Hall University, South Orange, New Jersey 07079</creatorcontrib><description>A proof is presented demonstrating the general applicability of a formalism, developed in a previous paper, that is of theoretical significance to the Einstein-Infeld-Hoffmann approach to equations of motion in general relativity. This formalism, utilizing the scalar invariants of a vacuum gravitational field, allows one to determine the mass-monopole characteristics of a source perturbed by an arbitrary stress-energy distribution, by analyzing only its surrounding field. The proof utilizes the Regge-Wheeler-Zerilli method of tensor spherical harmonic decomposition of perturbations of a Schwarzschild background. It is concluded that a generalization of our formalism to a more complex source structure (as well as a proof that does not need to resort to any approximation procedures) must await a deeper understanding of the global properties of the eigenvalues of the Riemann curvature tensor.</description><identifier>ISSN: 0556-2821</identifier><identifier>EISSN: 1089-4918</identifier><identifier>DOI: 10.1103/PhysRevD.33.1538</identifier><identifier>PMID: 9956799</identifier><identifier>CODEN: PRVDAQ</identifier><language>eng</language><publisher>Ridge, NY: American Physical Society</publisher><subject>657003 - Theoretical & Mathematical Physics- Relativity & Gravitation ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Classical general relativity ; DIFFERENTIAL EQUATIONS ; EINSTEIN FIELD EQUATIONS ; EQUATIONS ; EQUATIONS OF MOTION ; Exact sciences and technology ; FIELD EQUATIONS ; FIELD THEORIES ; General relativity and gravitation ; GENERAL RELATIVITY THEORY ; MATHEMATICAL SPACE ; MATTER ; PARTIAL DIFFERENTIAL EQUATIONS ; Physics ; RIEMANN SPACE ; SINGULARITY ; SPACE ; SYMMETRY GROUPS</subject><ispartof>Phys. Rev. D; (United States), 1986-03, Vol.33 (6), p.1538-1546</ispartof><rights>1987 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c307t-2410e8a4822bbefe113f4a729fdbc4ee659f663cf764413e74195048f2380b233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,2874,2875,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7898507$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9956799$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5923168$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>SCHLEIFER, N</creatorcontrib><creatorcontrib>Department of Physics, Seton Hall University, South Orange, New Jersey 07079</creatorcontrib><title>Generalized proof of a mass-monopole criterion</title><title>Phys. Rev. D; (United States)</title><addtitle>Phys Rev D Part Fields</addtitle><description>A proof is presented demonstrating the general applicability of a formalism, developed in a previous paper, that is of theoretical significance to the Einstein-Infeld-Hoffmann approach to equations of motion in general relativity. This formalism, utilizing the scalar invariants of a vacuum gravitational field, allows one to determine the mass-monopole characteristics of a source perturbed by an arbitrary stress-energy distribution, by analyzing only its surrounding field. The proof utilizes the Regge-Wheeler-Zerilli method of tensor spherical harmonic decomposition of perturbations of a Schwarzschild background. It is concluded that a generalization of our formalism to a more complex source structure (as well as a proof that does not need to resort to any approximation procedures) must await a deeper understanding of the global properties of the eigenvalues of the Riemann curvature tensor.</description><subject>657003 - Theoretical & Mathematical Physics- Relativity & Gravitation</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Classical general relativity</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>EINSTEIN FIELD EQUATIONS</subject><subject>EQUATIONS</subject><subject>EQUATIONS OF MOTION</subject><subject>Exact sciences and technology</subject><subject>FIELD EQUATIONS</subject><subject>FIELD THEORIES</subject><subject>General relativity and gravitation</subject><subject>GENERAL RELATIVITY THEORY</subject><subject>MATHEMATICAL SPACE</subject><subject>MATTER</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>Physics</subject><subject>RIEMANN SPACE</subject><subject>SINGULARITY</subject><subject>SPACE</subject><subject>SYMMETRY GROUPS</subject><issn>0556-2821</issn><issn>1089-4918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LAzEQxYMotVbvXoQiHrzsmq_NJkepWoWCInoO2XRCV3Y3NdkK9a83pWuHgTnM770ZHkKXBOeEYHb3ttrGd_h5yBnLScHkERoTLFXGFZHHaIyLQmRUUnKKzmL8wqmoYCM0UqoQpVJjlM-hg2Ca-heW03Xw3k1Tm2lrYsxa3_m1b2BqQ91DqH13jk6caSJcDHOCPp8eP2bP2eJ1_jK7X2SW4bLPKCcYpOGS0qoCB4Qwx01JlVtWlgOIQjkhmHWl4JwwKDlRBebSUSZxRRmboOu9r499raNN5-3K-q4D2-tCUUaETNDtHkp_f28g9rqto4WmMR34TdREJhJLka5PEN6jNvgYAzi9DnVrwlYTrHdJ6v8kNWN6l2SSXA3um6qF5UEwRJf2N8PeRGsaF0xn63jASqlkgUv2BxDcevU</recordid><startdate>19860315</startdate><enddate>19860315</enddate><creator>SCHLEIFER, N</creator><general>American Physical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>19860315</creationdate><title>Generalized proof of a mass-monopole criterion</title><author>SCHLEIFER, N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-2410e8a4822bbefe113f4a729fdbc4ee659f663cf764413e74195048f2380b233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>657003 - Theoretical & Mathematical Physics- Relativity & Gravitation</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Classical general relativity</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>EINSTEIN FIELD EQUATIONS</topic><topic>EQUATIONS</topic><topic>EQUATIONS OF MOTION</topic><topic>Exact sciences and technology</topic><topic>FIELD EQUATIONS</topic><topic>FIELD THEORIES</topic><topic>General relativity and gravitation</topic><topic>GENERAL RELATIVITY THEORY</topic><topic>MATHEMATICAL SPACE</topic><topic>MATTER</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>Physics</topic><topic>RIEMANN SPACE</topic><topic>SINGULARITY</topic><topic>SPACE</topic><topic>SYMMETRY GROUPS</topic><toplevel>online_resources</toplevel><creatorcontrib>SCHLEIFER, N</creatorcontrib><creatorcontrib>Department of Physics, Seton Hall University, South Orange, New Jersey 07079</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Phys. Rev. D; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SCHLEIFER, N</au><aucorp>Department of Physics, Seton Hall University, South Orange, New Jersey 07079</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized proof of a mass-monopole criterion</atitle><jtitle>Phys. Rev. D; (United States)</jtitle><addtitle>Phys Rev D Part Fields</addtitle><date>1986-03-15</date><risdate>1986</risdate><volume>33</volume><issue>6</issue><spage>1538</spage><epage>1546</epage><pages>1538-1546</pages><issn>0556-2821</issn><eissn>1089-4918</eissn><coden>PRVDAQ</coden><abstract>A proof is presented demonstrating the general applicability of a formalism, developed in a previous paper, that is of theoretical significance to the Einstein-Infeld-Hoffmann approach to equations of motion in general relativity. This formalism, utilizing the scalar invariants of a vacuum gravitational field, allows one to determine the mass-monopole characteristics of a source perturbed by an arbitrary stress-energy distribution, by analyzing only its surrounding field. The proof utilizes the Regge-Wheeler-Zerilli method of tensor spherical harmonic decomposition of perturbations of a Schwarzschild background. It is concluded that a generalization of our formalism to a more complex source structure (as well as a proof that does not need to resort to any approximation procedures) must await a deeper understanding of the global properties of the eigenvalues of the Riemann curvature tensor.</abstract><cop>Ridge, NY</cop><pub>American Physical Society</pub><pmid>9956799</pmid><doi>10.1103/PhysRevD.33.1538</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0556-2821 |
ispartof | Phys. Rev. D; (United States), 1986-03, Vol.33 (6), p.1538-1546 |
issn | 0556-2821 1089-4918 |
language | eng |
recordid | cdi_proquest_miscellaneous_1859208611 |
source | American Physical Society Journals |
subjects | 657003 - Theoretical & Mathematical Physics- Relativity & Gravitation CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Classical general relativity DIFFERENTIAL EQUATIONS EINSTEIN FIELD EQUATIONS EQUATIONS EQUATIONS OF MOTION Exact sciences and technology FIELD EQUATIONS FIELD THEORIES General relativity and gravitation GENERAL RELATIVITY THEORY MATHEMATICAL SPACE MATTER PARTIAL DIFFERENTIAL EQUATIONS Physics RIEMANN SPACE SINGULARITY SPACE SYMMETRY GROUPS |
title | Generalized proof of a mass-monopole criterion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A11%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20proof%20of%20a%20mass-monopole%20criterion&rft.jtitle=Phys.%20Rev.%20D;%20(United%20States)&rft.au=SCHLEIFER,%20N&rft.aucorp=Department%20of%20Physics,%20Seton%20Hall%20University,%20South%20Orange,%20New%20Jersey%2007079&rft.date=1986-03-15&rft.volume=33&rft.issue=6&rft.spage=1538&rft.epage=1546&rft.pages=1538-1546&rft.issn=0556-2821&rft.eissn=1089-4918&rft.coden=PRVDAQ&rft_id=info:doi/10.1103/PhysRevD.33.1538&rft_dat=%3Cproquest_osti_%3E1859208611%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859208611&rft_id=info:pmid/9956799&rfr_iscdi=true |