Statistical self-similarity of spatial variations of snow cover: verification of the hypothesis and application in the snowmelt runoff generation models

An analysis of snow cover measurement data in a number of physiographic regions and landscapes has shown that fields of snow cover characteristics can be considered as random fields with homogeneous increments and that these fields exhibit statistical self‐similarity. A physically based distributed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrological processes 2001-12, Vol.15 (18), p.3343-3355
Hauptverfasser: Kuchment, L. S., Gelfan, A. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3355
container_issue 18
container_start_page 3343
container_title Hydrological processes
container_volume 15
creator Kuchment, L. S.
Gelfan, A. N.
description An analysis of snow cover measurement data in a number of physiographic regions and landscapes has shown that fields of snow cover characteristics can be considered as random fields with homogeneous increments and that these fields exhibit statistical self‐similarity. A physically based distributed model of snowmelt runoff generation developed for the Upper Kolyma River basin (the catchment area is about 100 000 km2) has been used to estimate the sensitivity of snowmelt dynamics over the basin and flood hydrographs to the parameterization of subgrid effects based on the hypothesis of statistical self‐similarity of the maximum snow water equivalent fields. Such parameterization of subgrid effects enables us to improve the description of snowmelt dynamics both within subgrid areas and over the entire river basin. The snowmelt flood hydrographs appear less sensitive to the self‐similarity of snow cover over subgrid areas than to the dynamics of snowmelt because of a too large catchment area of the basin under consideration. However, for certain hydrometeorological conditions and for small river basins this effect may lead to significant changes of the calculated hydrographs. Copyright © 2001 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/hyp.1032
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18569214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18569214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3952-bb9a948111ea5938e1151de77dbca271f270c966e1fca49ccff2cc0a6415a0373</originalsourceid><addsrcrecordid>eNp9kU1uFDEQhS0EEkMSiSN4A2LT4J-222ZHIkiQRgFBIsTK8nhsYnC3O66ehLkJx8WdGcgKNlWlel89WX4IPaXkJSWEvbrajnXg7AFaUKJ1Q4kSD9GCKCUaSVT3GD0B-E4IaYkiC_Tr82SnCFN0NmHwKTQQ-5hsidMW54BhrHKVbuqmTnmAu-2Qb7HLN768xrXEUM9ncdamK4_rI3LtEAHbYY3tOKY_RBzuiNmh92nCZTPkEPA3P_iyI_q89gkO0aNgE_ijfT9Al-_eXpycNcsPp-9P3iwbx7VgzWqlrW4VpdRbobnylAq69l23XjnLOhpYR5yW0tPgbKudC4E5R6xsqbCEd_wAPd_5jiVfbzxMpo_gfEp28HkDhiohNaNtBV_8H5RStEoLRe5RVzJA8cGMJfa2bA0lZk7J1A8yc0oVfbZ3tVAjCMUOLsI9z1vGOz1zzY67jclv_-lnzr5-3Pvu-Zqt__mXt-WHkR3vhPlyfmo-seXxhZbcHPPfGUWzSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1665489580</pqid></control><display><type>article</type><title>Statistical self-similarity of spatial variations of snow cover: verification of the hypothesis and application in the snowmelt runoff generation models</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kuchment, L. S. ; Gelfan, A. N.</creator><contributor>Moore, RD ; Hardy, JP ; Ming-Ko, Woo (eds) ; Pomeroy, JW</contributor><creatorcontrib>Kuchment, L. S. ; Gelfan, A. N. ; Moore, RD ; Hardy, JP ; Ming-Ko, Woo (eds) ; Pomeroy, JW</creatorcontrib><description>An analysis of snow cover measurement data in a number of physiographic regions and landscapes has shown that fields of snow cover characteristics can be considered as random fields with homogeneous increments and that these fields exhibit statistical self‐similarity. A physically based distributed model of snowmelt runoff generation developed for the Upper Kolyma River basin (the catchment area is about 100 000 km2) has been used to estimate the sensitivity of snowmelt dynamics over the basin and flood hydrographs to the parameterization of subgrid effects based on the hypothesis of statistical self‐similarity of the maximum snow water equivalent fields. Such parameterization of subgrid effects enables us to improve the description of snowmelt dynamics both within subgrid areas and over the entire river basin. The snowmelt flood hydrographs appear less sensitive to the self‐similarity of snow cover over subgrid areas than to the dynamics of snowmelt because of a too large catchment area of the basin under consideration. However, for certain hydrometeorological conditions and for small river basins this effect may lead to significant changes of the calculated hydrographs. Copyright © 2001 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0885-6087</identifier><identifier>EISSN: 1099-1085</identifier><identifier>DOI: 10.1002/hyp.1032</identifier><identifier>CODEN: HYPRE3</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>distributed modelling ; runoff ; Russia, Kolyma R ; self-similarity ; snow</subject><ispartof>Hydrological processes, 2001-12, Vol.15 (18), p.3343-3355</ispartof><rights>Copyright © 2001 John Wiley &amp; Sons, Ltd.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3952-bb9a948111ea5938e1151de77dbca271f270c966e1fca49ccff2cc0a6415a0373</citedby><cites>FETCH-LOGICAL-c3952-bb9a948111ea5938e1151de77dbca271f270c966e1fca49ccff2cc0a6415a0373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhyp.1032$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhyp.1032$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13423792$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Moore, RD</contributor><contributor>Hardy, JP</contributor><contributor>Ming-Ko, Woo (eds)</contributor><contributor>Pomeroy, JW</contributor><creatorcontrib>Kuchment, L. S.</creatorcontrib><creatorcontrib>Gelfan, A. N.</creatorcontrib><title>Statistical self-similarity of spatial variations of snow cover: verification of the hypothesis and application in the snowmelt runoff generation models</title><title>Hydrological processes</title><addtitle>Hydrol. Process</addtitle><description>An analysis of snow cover measurement data in a number of physiographic regions and landscapes has shown that fields of snow cover characteristics can be considered as random fields with homogeneous increments and that these fields exhibit statistical self‐similarity. A physically based distributed model of snowmelt runoff generation developed for the Upper Kolyma River basin (the catchment area is about 100 000 km2) has been used to estimate the sensitivity of snowmelt dynamics over the basin and flood hydrographs to the parameterization of subgrid effects based on the hypothesis of statistical self‐similarity of the maximum snow water equivalent fields. Such parameterization of subgrid effects enables us to improve the description of snowmelt dynamics both within subgrid areas and over the entire river basin. The snowmelt flood hydrographs appear less sensitive to the self‐similarity of snow cover over subgrid areas than to the dynamics of snowmelt because of a too large catchment area of the basin under consideration. However, for certain hydrometeorological conditions and for small river basins this effect may lead to significant changes of the calculated hydrographs. Copyright © 2001 John Wiley &amp; Sons, Ltd.</description><subject>distributed modelling</subject><subject>runoff</subject><subject>Russia, Kolyma R</subject><subject>self-similarity</subject><subject>snow</subject><issn>0885-6087</issn><issn>1099-1085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp9kU1uFDEQhS0EEkMSiSN4A2LT4J-222ZHIkiQRgFBIsTK8nhsYnC3O66ehLkJx8WdGcgKNlWlel89WX4IPaXkJSWEvbrajnXg7AFaUKJ1Q4kSD9GCKCUaSVT3GD0B-E4IaYkiC_Tr82SnCFN0NmHwKTQQ-5hsidMW54BhrHKVbuqmTnmAu-2Qb7HLN768xrXEUM9ncdamK4_rI3LtEAHbYY3tOKY_RBzuiNmh92nCZTPkEPA3P_iyI_q89gkO0aNgE_ijfT9Al-_eXpycNcsPp-9P3iwbx7VgzWqlrW4VpdRbobnylAq69l23XjnLOhpYR5yW0tPgbKudC4E5R6xsqbCEd_wAPd_5jiVfbzxMpo_gfEp28HkDhiohNaNtBV_8H5RStEoLRe5RVzJA8cGMJfa2bA0lZk7J1A8yc0oVfbZ3tVAjCMUOLsI9z1vGOz1zzY67jclv_-lnzr5-3Pvu-Zqt__mXt-WHkR3vhPlyfmo-seXxhZbcHPPfGUWzSg</recordid><startdate>20011230</startdate><enddate>20011230</enddate><creator>Kuchment, L. S.</creator><creator>Gelfan, A. N.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>KL.</scope></search><sort><creationdate>20011230</creationdate><title>Statistical self-similarity of spatial variations of snow cover: verification of the hypothesis and application in the snowmelt runoff generation models</title><author>Kuchment, L. S. ; Gelfan, A. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3952-bb9a948111ea5938e1151de77dbca271f270c966e1fca49ccff2cc0a6415a0373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>distributed modelling</topic><topic>runoff</topic><topic>Russia, Kolyma R</topic><topic>self-similarity</topic><topic>snow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuchment, L. S.</creatorcontrib><creatorcontrib>Gelfan, A. N.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Hydrological processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuchment, L. S.</au><au>Gelfan, A. N.</au><au>Moore, RD</au><au>Hardy, JP</au><au>Ming-Ko, Woo (eds)</au><au>Pomeroy, JW</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical self-similarity of spatial variations of snow cover: verification of the hypothesis and application in the snowmelt runoff generation models</atitle><jtitle>Hydrological processes</jtitle><addtitle>Hydrol. Process</addtitle><date>2001-12-30</date><risdate>2001</risdate><volume>15</volume><issue>18</issue><spage>3343</spage><epage>3355</epage><pages>3343-3355</pages><issn>0885-6087</issn><eissn>1099-1085</eissn><coden>HYPRE3</coden><abstract>An analysis of snow cover measurement data in a number of physiographic regions and landscapes has shown that fields of snow cover characteristics can be considered as random fields with homogeneous increments and that these fields exhibit statistical self‐similarity. A physically based distributed model of snowmelt runoff generation developed for the Upper Kolyma River basin (the catchment area is about 100 000 km2) has been used to estimate the sensitivity of snowmelt dynamics over the basin and flood hydrographs to the parameterization of subgrid effects based on the hypothesis of statistical self‐similarity of the maximum snow water equivalent fields. Such parameterization of subgrid effects enables us to improve the description of snowmelt dynamics both within subgrid areas and over the entire river basin. The snowmelt flood hydrographs appear less sensitive to the self‐similarity of snow cover over subgrid areas than to the dynamics of snowmelt because of a too large catchment area of the basin under consideration. However, for certain hydrometeorological conditions and for small river basins this effect may lead to significant changes of the calculated hydrographs. Copyright © 2001 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/hyp.1032</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-6087
ispartof Hydrological processes, 2001-12, Vol.15 (18), p.3343-3355
issn 0885-6087
1099-1085
language eng
recordid cdi_proquest_miscellaneous_18569214
source Wiley Online Library Journals Frontfile Complete
subjects distributed modelling
runoff
Russia, Kolyma R
self-similarity
snow
title Statistical self-similarity of spatial variations of snow cover: verification of the hypothesis and application in the snowmelt runoff generation models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A50%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20self-similarity%20of%20spatial%20variations%20of%20snow%20cover:%20verification%20of%20the%20hypothesis%20and%20application%20in%20the%20snowmelt%20runoff%20generation%20models&rft.jtitle=Hydrological%20processes&rft.au=Kuchment,%20L.%20S.&rft.date=2001-12-30&rft.volume=15&rft.issue=18&rft.spage=3343&rft.epage=3355&rft.pages=3343-3355&rft.issn=0885-6087&rft.eissn=1099-1085&rft.coden=HYPRE3&rft_id=info:doi/10.1002/hyp.1032&rft_dat=%3Cproquest_cross%3E18569214%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1665489580&rft_id=info:pmid/&rfr_iscdi=true