ATP-Induced Structural Remodeling in the Antiactivator FleN Enables Formation of the Functional Dimeric Form
FleN, a P loop ATPase is vital for maintaining a monotrichous phenotype in Pseudomonas aeruginosa. FleN exhibits antagonistic activity against FleQ, the master transcriptional regulator of flagellar genes. Crystal structures of FleN in the apo form (1.66 Å) and in complex with β,γ-imidoadenosine 5′-...
Gespeichert in:
Veröffentlicht in: | Structure (London) 2017-02, Vol.25 (2), p.243-252 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 252 |
---|---|
container_issue | 2 |
container_start_page | 243 |
container_title | Structure (London) |
container_volume | 25 |
creator | Chanchal Banerjee, Priyajit Jain, Deepti |
description | FleN, a P loop ATPase is vital for maintaining a monotrichous phenotype in Pseudomonas aeruginosa. FleN exhibits antagonistic activity against FleQ, the master transcriptional regulator of flagellar genes. Crystal structures of FleN in the apo form (1.66 Å) and in complex with β,γ-imidoadenosine 5′-triphosphate (1.55 Å) reveal that it undergoes drastic conformational changes on ATP binding to attain a structure capable of dimerization. Mutations of the residues that stabilize the binding of ATP were defective in their ability to dimerize and do not inhibit ATP hydrolysis by FleQ. Conversely, the catalytic mutant of FleN, was an efficient inhibitor. These observations posit that the dimer is the functional form of FleN and it is nucleotide binding and not hydrolysis by FleN that is necessary to exert an antagonistic effect against FleQ. Our study shows that ATP-induced dimerization may be a strategy to achieve reversible inhibition of FleQ to fine-tune the function of this activator to an optimal level.
[Display omitted]
•FleN, a P loop ATPase, inhibits ATP hydrolysis by the transcription regulator FleQ•ATP binding by FleN elicits conformational changes that enable formation of a dimer•Nucleotide binding is necessary and sufficient for antiactivator function of FleN•Reversible dimerization of FleN regulates FleQ and ensures monoflagellate status
FleN is an antiactivator of FleQ, a global transcriptional regulator of flagellar and biofilm genes in Pseudomonas aeruginosa. It inhibits ATP hydrolysis by FleQ. Chanchal et al. show that FleN undergoes structural remodeling on ATP binding and that the ATPase activity of FleN is not essential for its antiactivator function. Reversible dimerization allows FleN to fine-tune the active cellular concentration of FleQ rather than exert a binary on/off effect and this ensures formation of a single flagellum. |
doi_str_mv | 10.1016/j.str.2016.11.022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1856868637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0969212616303896</els_id><sourcerecordid>1856868637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-f631e02b20d149ffa2be8fdc48fc4ce9a2cadd18e0db64c68285f7e7eefcefe43</originalsourceid><addsrcrecordid>eNp9kMFOGzEQhq2qqAToA_RS-djLLraz6zjqKQoJICFAQM-W1x63jnbt1PZG4u1xCHBEc5gZ6Ztfmg-hH5TUlFB-vqlTjjUrY01pTRj7giZUzETVUMG_ogmZ83nFKOPH6CSlDSGEtYR8Q8dMEN62pJ2gfvF0X117M2ow-DHHUecxqh4_wBAM9M7_xc7j_A_wwmendHY7lUPE6x5u8cqrroeE1yEOKrvgcbCv7Hr0er-XoAs3QHT6lTlDR1b1Cb6_9VP0Z716Wl5VN3eX18vFTaUbznJl-ZQCYR0jhjZzaxXrQFijG2F1o2GumFbGUAHEdLzRXDDR2hnMAKwGC830FP065G5j-D9CynJwSUPfKw9hTJKKlotS01lB6QHVMaQUwcptdIOKz5ISuZcsN7JIlnvJklJZJJebn2_xYzeA-bh4t1qA3wcAypM7B1Em7cAXxS6CztIE90n8C7jQjyk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1856868637</pqid></control><display><type>article</type><title>ATP-Induced Structural Remodeling in the Antiactivator FleN Enables Formation of the Functional Dimeric Form</title><source>MEDLINE</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Open Access: Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB Electronic Journals Library</source><creator>Chanchal ; Banerjee, Priyajit ; Jain, Deepti</creator><creatorcontrib>Chanchal ; Banerjee, Priyajit ; Jain, Deepti</creatorcontrib><description>FleN, a P loop ATPase is vital for maintaining a monotrichous phenotype in Pseudomonas aeruginosa. FleN exhibits antagonistic activity against FleQ, the master transcriptional regulator of flagellar genes. Crystal structures of FleN in the apo form (1.66 Å) and in complex with β,γ-imidoadenosine 5′-triphosphate (1.55 Å) reveal that it undergoes drastic conformational changes on ATP binding to attain a structure capable of dimerization. Mutations of the residues that stabilize the binding of ATP were defective in their ability to dimerize and do not inhibit ATP hydrolysis by FleQ. Conversely, the catalytic mutant of FleN, was an efficient inhibitor. These observations posit that the dimer is the functional form of FleN and it is nucleotide binding and not hydrolysis by FleN that is necessary to exert an antagonistic effect against FleQ. Our study shows that ATP-induced dimerization may be a strategy to achieve reversible inhibition of FleQ to fine-tune the function of this activator to an optimal level.
[Display omitted]
•FleN, a P loop ATPase, inhibits ATP hydrolysis by the transcription regulator FleQ•ATP binding by FleN elicits conformational changes that enable formation of a dimer•Nucleotide binding is necessary and sufficient for antiactivator function of FleN•Reversible dimerization of FleN regulates FleQ and ensures monoflagellate status
FleN is an antiactivator of FleQ, a global transcriptional regulator of flagellar and biofilm genes in Pseudomonas aeruginosa. It inhibits ATP hydrolysis by FleQ. Chanchal et al. show that FleN undergoes structural remodeling on ATP binding and that the ATPase activity of FleN is not essential for its antiactivator function. Reversible dimerization allows FleN to fine-tune the active cellular concentration of FleQ rather than exert a binary on/off effect and this ensures formation of a single flagellum.</description><identifier>ISSN: 0969-2126</identifier><identifier>EISSN: 1878-4186</identifier><identifier>DOI: 10.1016/j.str.2016.11.022</identifier><identifier>PMID: 28065505</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Adenosine Triphosphate - chemistry ; Adenosine Triphosphate - metabolism ; Amino Acid Sequence ; antiactivator ; Apoproteins - chemistry ; Apoproteins - genetics ; Apoproteins - metabolism ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Binding Sites ; Cloning, Molecular ; crystal structure ; Crystallography, X-Ray ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Flagella - genetics ; Flagella - metabolism ; FleN ; Gene Expression ; Gene Expression Regulation, Bacterial ; Hydrolysis ; Kinetics ; Models, Molecular ; Mutation ; Protein Binding ; Protein Conformation, alpha-Helical ; Protein Conformation, beta-Strand ; Protein Interaction Domains and Motifs ; Protein Multimerization ; Pseudomonas aeruginosa - genetics ; Pseudomonas aeruginosa - metabolism ; Pseudomonas aeruginosa flagella ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Sequence Alignment ; Sequence Homology, Amino Acid ; Substrate Specificity ; Trans-Activators - chemistry ; Trans-Activators - genetics ; Trans-Activators - metabolism ; transcription</subject><ispartof>Structure (London), 2017-02, Vol.25 (2), p.243-252</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright © 2017 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-f631e02b20d149ffa2be8fdc48fc4ce9a2cadd18e0db64c68285f7e7eefcefe43</citedby><cites>FETCH-LOGICAL-c462t-f631e02b20d149ffa2be8fdc48fc4ce9a2cadd18e0db64c68285f7e7eefcefe43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0969212616303896$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28065505$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chanchal</creatorcontrib><creatorcontrib>Banerjee, Priyajit</creatorcontrib><creatorcontrib>Jain, Deepti</creatorcontrib><title>ATP-Induced Structural Remodeling in the Antiactivator FleN Enables Formation of the Functional Dimeric Form</title><title>Structure (London)</title><addtitle>Structure</addtitle><description>FleN, a P loop ATPase is vital for maintaining a monotrichous phenotype in Pseudomonas aeruginosa. FleN exhibits antagonistic activity against FleQ, the master transcriptional regulator of flagellar genes. Crystal structures of FleN in the apo form (1.66 Å) and in complex with β,γ-imidoadenosine 5′-triphosphate (1.55 Å) reveal that it undergoes drastic conformational changes on ATP binding to attain a structure capable of dimerization. Mutations of the residues that stabilize the binding of ATP were defective in their ability to dimerize and do not inhibit ATP hydrolysis by FleQ. Conversely, the catalytic mutant of FleN, was an efficient inhibitor. These observations posit that the dimer is the functional form of FleN and it is nucleotide binding and not hydrolysis by FleN that is necessary to exert an antagonistic effect against FleQ. Our study shows that ATP-induced dimerization may be a strategy to achieve reversible inhibition of FleQ to fine-tune the function of this activator to an optimal level.
[Display omitted]
•FleN, a P loop ATPase, inhibits ATP hydrolysis by the transcription regulator FleQ•ATP binding by FleN elicits conformational changes that enable formation of a dimer•Nucleotide binding is necessary and sufficient for antiactivator function of FleN•Reversible dimerization of FleN regulates FleQ and ensures monoflagellate status
FleN is an antiactivator of FleQ, a global transcriptional regulator of flagellar and biofilm genes in Pseudomonas aeruginosa. It inhibits ATP hydrolysis by FleQ. Chanchal et al. show that FleN undergoes structural remodeling on ATP binding and that the ATPase activity of FleN is not essential for its antiactivator function. Reversible dimerization allows FleN to fine-tune the active cellular concentration of FleQ rather than exert a binary on/off effect and this ensures formation of a single flagellum.</description><subject>Adenosine Triphosphate - chemistry</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Amino Acid Sequence</subject><subject>antiactivator</subject><subject>Apoproteins - chemistry</subject><subject>Apoproteins - genetics</subject><subject>Apoproteins - metabolism</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding Sites</subject><subject>Cloning, Molecular</subject><subject>crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Flagella - genetics</subject><subject>Flagella - metabolism</subject><subject>FleN</subject><subject>Gene Expression</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Hydrolysis</subject><subject>Kinetics</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Protein Binding</subject><subject>Protein Conformation, alpha-Helical</subject><subject>Protein Conformation, beta-Strand</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Protein Multimerization</subject><subject>Pseudomonas aeruginosa - genetics</subject><subject>Pseudomonas aeruginosa - metabolism</subject><subject>Pseudomonas aeruginosa flagella</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Sequence Alignment</subject><subject>Sequence Homology, Amino Acid</subject><subject>Substrate Specificity</subject><subject>Trans-Activators - chemistry</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><subject>transcription</subject><issn>0969-2126</issn><issn>1878-4186</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMFOGzEQhq2qqAToA_RS-djLLraz6zjqKQoJICFAQM-W1x63jnbt1PZG4u1xCHBEc5gZ6Ztfmg-hH5TUlFB-vqlTjjUrY01pTRj7giZUzETVUMG_ogmZ83nFKOPH6CSlDSGEtYR8Q8dMEN62pJ2gfvF0X117M2ow-DHHUecxqh4_wBAM9M7_xc7j_A_wwmendHY7lUPE6x5u8cqrroeE1yEOKrvgcbCv7Hr0er-XoAs3QHT6lTlDR1b1Cb6_9VP0Z716Wl5VN3eX18vFTaUbznJl-ZQCYR0jhjZzaxXrQFijG2F1o2GumFbGUAHEdLzRXDDR2hnMAKwGC830FP065G5j-D9CynJwSUPfKw9hTJKKlotS01lB6QHVMaQUwcptdIOKz5ISuZcsN7JIlnvJklJZJJebn2_xYzeA-bh4t1qA3wcAypM7B1Em7cAXxS6CztIE90n8C7jQjyk</recordid><startdate>20170207</startdate><enddate>20170207</enddate><creator>Chanchal</creator><creator>Banerjee, Priyajit</creator><creator>Jain, Deepti</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170207</creationdate><title>ATP-Induced Structural Remodeling in the Antiactivator FleN Enables Formation of the Functional Dimeric Form</title><author>Chanchal ; Banerjee, Priyajit ; Jain, Deepti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-f631e02b20d149ffa2be8fdc48fc4ce9a2cadd18e0db64c68285f7e7eefcefe43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adenosine Triphosphate - chemistry</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Amino Acid Sequence</topic><topic>antiactivator</topic><topic>Apoproteins - chemistry</topic><topic>Apoproteins - genetics</topic><topic>Apoproteins - metabolism</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding Sites</topic><topic>Cloning, Molecular</topic><topic>crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Flagella - genetics</topic><topic>Flagella - metabolism</topic><topic>FleN</topic><topic>Gene Expression</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Hydrolysis</topic><topic>Kinetics</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Protein Binding</topic><topic>Protein Conformation, alpha-Helical</topic><topic>Protein Conformation, beta-Strand</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Protein Multimerization</topic><topic>Pseudomonas aeruginosa - genetics</topic><topic>Pseudomonas aeruginosa - metabolism</topic><topic>Pseudomonas aeruginosa flagella</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Sequence Alignment</topic><topic>Sequence Homology, Amino Acid</topic><topic>Substrate Specificity</topic><topic>Trans-Activators - chemistry</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><topic>transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chanchal</creatorcontrib><creatorcontrib>Banerjee, Priyajit</creatorcontrib><creatorcontrib>Jain, Deepti</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Structure (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chanchal</au><au>Banerjee, Priyajit</au><au>Jain, Deepti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ATP-Induced Structural Remodeling in the Antiactivator FleN Enables Formation of the Functional Dimeric Form</atitle><jtitle>Structure (London)</jtitle><addtitle>Structure</addtitle><date>2017-02-07</date><risdate>2017</risdate><volume>25</volume><issue>2</issue><spage>243</spage><epage>252</epage><pages>243-252</pages><issn>0969-2126</issn><eissn>1878-4186</eissn><abstract>FleN, a P loop ATPase is vital for maintaining a monotrichous phenotype in Pseudomonas aeruginosa. FleN exhibits antagonistic activity against FleQ, the master transcriptional regulator of flagellar genes. Crystal structures of FleN in the apo form (1.66 Å) and in complex with β,γ-imidoadenosine 5′-triphosphate (1.55 Å) reveal that it undergoes drastic conformational changes on ATP binding to attain a structure capable of dimerization. Mutations of the residues that stabilize the binding of ATP were defective in their ability to dimerize and do not inhibit ATP hydrolysis by FleQ. Conversely, the catalytic mutant of FleN, was an efficient inhibitor. These observations posit that the dimer is the functional form of FleN and it is nucleotide binding and not hydrolysis by FleN that is necessary to exert an antagonistic effect against FleQ. Our study shows that ATP-induced dimerization may be a strategy to achieve reversible inhibition of FleQ to fine-tune the function of this activator to an optimal level.
[Display omitted]
•FleN, a P loop ATPase, inhibits ATP hydrolysis by the transcription regulator FleQ•ATP binding by FleN elicits conformational changes that enable formation of a dimer•Nucleotide binding is necessary and sufficient for antiactivator function of FleN•Reversible dimerization of FleN regulates FleQ and ensures monoflagellate status
FleN is an antiactivator of FleQ, a global transcriptional regulator of flagellar and biofilm genes in Pseudomonas aeruginosa. It inhibits ATP hydrolysis by FleQ. Chanchal et al. show that FleN undergoes structural remodeling on ATP binding and that the ATPase activity of FleN is not essential for its antiactivator function. Reversible dimerization allows FleN to fine-tune the active cellular concentration of FleQ rather than exert a binary on/off effect and this ensures formation of a single flagellum.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>28065505</pmid><doi>10.1016/j.str.2016.11.022</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-2126 |
ispartof | Structure (London), 2017-02, Vol.25 (2), p.243-252 |
issn | 0969-2126 1878-4186 |
language | eng |
recordid | cdi_proquest_miscellaneous_1856868637 |
source | MEDLINE; Full-Text Journals in Chemistry (Open access); Open Access: Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB Electronic Journals Library |
subjects | Adenosine Triphosphate - chemistry Adenosine Triphosphate - metabolism Amino Acid Sequence antiactivator Apoproteins - chemistry Apoproteins - genetics Apoproteins - metabolism Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism Binding Sites Cloning, Molecular crystal structure Crystallography, X-Ray Escherichia coli - genetics Escherichia coli - metabolism Flagella - genetics Flagella - metabolism FleN Gene Expression Gene Expression Regulation, Bacterial Hydrolysis Kinetics Models, Molecular Mutation Protein Binding Protein Conformation, alpha-Helical Protein Conformation, beta-Strand Protein Interaction Domains and Motifs Protein Multimerization Pseudomonas aeruginosa - genetics Pseudomonas aeruginosa - metabolism Pseudomonas aeruginosa flagella Recombinant Proteins - chemistry Recombinant Proteins - genetics Recombinant Proteins - metabolism Sequence Alignment Sequence Homology, Amino Acid Substrate Specificity Trans-Activators - chemistry Trans-Activators - genetics Trans-Activators - metabolism transcription |
title | ATP-Induced Structural Remodeling in the Antiactivator FleN Enables Formation of the Functional Dimeric Form |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A50%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ATP-Induced%20Structural%20Remodeling%20in%20the%20Antiactivator%20FleN%20Enables%20Formation%20of%20the%20Functional%20Dimeric%20Form&rft.jtitle=Structure%20(London)&rft.au=Chanchal&rft.date=2017-02-07&rft.volume=25&rft.issue=2&rft.spage=243&rft.epage=252&rft.pages=243-252&rft.issn=0969-2126&rft.eissn=1878-4186&rft_id=info:doi/10.1016/j.str.2016.11.022&rft_dat=%3Cproquest_cross%3E1856868637%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1856868637&rft_id=info:pmid/28065505&rft_els_id=S0969212616303896&rfr_iscdi=true |