Braided stream and flood plain architecture: the Rio Vero Formation, Spanish Pyrenees
Early- to middle-Miocene fluvial sandstones of the Rio Vero Formation were studied, in an area around the town of Barbastro, south central Pyrenees Spain. The outstanding quality of outcrops in this area allows a three-dimensional study of architectural elements. Six architectural elements are recog...
Gespeichert in:
Veröffentlicht in: | Sedimentary geology 2001-03, Vol.139 (3-4), p.229-260 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Early- to middle-Miocene fluvial sandstones of the Rio Vero Formation were studied, in an area around the town of Barbastro, south central Pyrenees Spain. The outstanding quality of outcrops in this area allows a three-dimensional study of architectural elements. Six architectural elements are recognised, described in detail, and interpreted from three key localities. Seven main lithofacies were identified and sub-divided into gravelly, sandy and fine-grained lithofacies. The architectural elements and lithofacies have been combined with a hierarchy of depositional bounding surfaces to fully interpret the evolution of the depositional system at the meso- and macro-scale. Not only the different architectural elements and lithofacies of the complete braided fluvial system, but also the lateral variation of the architectural elements were emphasised in this study. Differential tectonic movements, seasonal climate change, and their effect on vertical and lateral evolution of the area were the main control on basin sedimentation, channel interconnection, palaeocurrent patterns, and consequently the fluvial architecture. The presence of lateral ramp anticlines caused the fluvial system to be laterally restricted, with the main channel-belts being located in the areas of highest subsidence and lowest topography. Intervening topographic highs acted as both flood plains and lateral barriers between the main channel systems. The proposed depositional model comprises broad, low-sinuosity, perennial, but seasonal moderate-energy streams. The sandstone architecture is dominated by channel-fill and sheet sands, and associated simple and more complex bars. Adjacent to the main channel-belts fine-grained sandstones, siltstones and immature paleosols occur. The along-strike relationship between major fluvial systems and their outlets into a foreland basin has important implications for the infill of the basin and the modelling of fluvial systems along mountain belt fronts. |
---|---|
ISSN: | 0037-0738 |
DOI: | 10.1016/S0037-0738(00)00165-2 |