Sequentially-crosslinked bioactive hydrogels as nano-patterned substrates with customizable stiffness and degradation for corneal tissue engineering applications

Abstract Naturally-bioactive hydrogels like gelatin provide favorable properties for tissue-engineering but lack sufficient mechanical strength for use as implantable tissue engineering substrates. Complex fabrication or multi-component additives can improve material strength, but often compromises...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2017-03, Vol.120, p.139-154
Hauptverfasser: Rizwan, Muhammad, Peh, Gary S.L, Ang, Heng-Pei, Chan Lwin, Nyein, Adnan, Khadijah, Mehta, Jodhbir S, Tan, Wui Siew, Yim, Evelyn K.F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 154
container_issue
container_start_page 139
container_title Biomaterials
container_volume 120
creator Rizwan, Muhammad
Peh, Gary S.L
Ang, Heng-Pei
Chan Lwin, Nyein
Adnan, Khadijah
Mehta, Jodhbir S
Tan, Wui Siew
Yim, Evelyn K.F
description Abstract Naturally-bioactive hydrogels like gelatin provide favorable properties for tissue-engineering but lack sufficient mechanical strength for use as implantable tissue engineering substrates. Complex fabrication or multi-component additives can improve material strength, but often compromises other properties. Studies have shown gelatin methacrylate (GelMA) as a bioactive hydrogel with diverse tissue growth applications. We hypothesize that, with suitable material modifications, GelMA could be employed for growth and implantation of tissue-engineered human corneal endothelial cell (HCEC) monolayer. Tissue-engineered HCEC monolayer could potentially be used to treat corneal blindness due to corneal endothelium dysfunction. Here, we exploited a sequential hybrid (physical followed by UV) crosslinking to create an improved material, named as GelMA+, with over 8-fold increase in mechanical strength as compared to regular GelMA. The presence of physical associations increased the subsequent UV-crosslinking efficiency resulting in robust materials able to withstand standard endothelium insertion surgical device loading. Favorable biodegradation kinetics were also measured in vitro and in vivo . We achieved hydrogels patterning with nano-scale resolution by use of oxygen impermeable stamps that overcome the limitations of PDMS based molding processes. Primary HCEC monolayers grown on GelMA+ carrier patterned with pillars of optimal dimension demonstrated improved zona-occludin-1 expression, higher cell density and cell size homogeneity, which are indications of functionally-superior transplantable monolayers. The hybrid crosslinking and fabrication approach offers potential utility for development of implantable tissue-engineered cell-carrier constructs with enhanced bio-functional properties.
doi_str_mv 10.1016/j.biomaterials.2016.12.026
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1856593325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961216307372</els_id><sourcerecordid>1856593325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-46280ee1c38f003b0e0e313e14b7197d7be88b5e4369a1d4c2d899ca8bc72c913</originalsourceid><addsrcrecordid>eNqNUsluFDEQbSEQGQK_gCxOXLrx0isHJBQIIEXiEDhbbrt64kmPPbjciYa_4U9TkwkIceLkRW9xveeieCV4Jbho32yq0cetyZC8mbGSdFcJWXHZPipWou_6shl487hYcVHLcmiFPCmeIW44nXktnxYnsuct7eWq-HUJPxYImZTmfWlTRJx9uAbHyMPY7G-AXe1dimuYkRlkwYRY7kwm90AoXEbMid6C7NbnK2YXzHHrf5pxBobZT1MAJGJwzME6GWeyj4FNMTEbScHMLHvEBRiEtQ9AM4U1M7vd7O09FJ8XTyYaE148rKfF9_OP384-lxdfP305e39R2lo1uaxbGgpAWNVPnKuRAwclFIh67MTQuW6Evh8bqFU7GOFqK10_DNb0o-2kHYQ6LV4fdXcpUiSY9dajhXk2AeKCWvRN2wxKyYagb4_Q-7wSTHqX_NakvRZcHyrSG_13RfpQkRZSU0VEfvngs4xbcH-ovzshwIcjgBKHGw9Jo_UQLDifwGbtov8_n3f_yFhqllKdr2EPuIlLCgeO0EgEfXn4LIe_IlrFO9VJdQcF-sQl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1856593325</pqid></control><display><type>article</type><title>Sequentially-crosslinked bioactive hydrogels as nano-patterned substrates with customizable stiffness and degradation for corneal tissue engineering applications</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Rizwan, Muhammad ; Peh, Gary S.L ; Ang, Heng-Pei ; Chan Lwin, Nyein ; Adnan, Khadijah ; Mehta, Jodhbir S ; Tan, Wui Siew ; Yim, Evelyn K.F</creator><creatorcontrib>Rizwan, Muhammad ; Peh, Gary S.L ; Ang, Heng-Pei ; Chan Lwin, Nyein ; Adnan, Khadijah ; Mehta, Jodhbir S ; Tan, Wui Siew ; Yim, Evelyn K.F</creatorcontrib><description>Abstract Naturally-bioactive hydrogels like gelatin provide favorable properties for tissue-engineering but lack sufficient mechanical strength for use as implantable tissue engineering substrates. Complex fabrication or multi-component additives can improve material strength, but often compromises other properties. Studies have shown gelatin methacrylate (GelMA) as a bioactive hydrogel with diverse tissue growth applications. We hypothesize that, with suitable material modifications, GelMA could be employed for growth and implantation of tissue-engineered human corneal endothelial cell (HCEC) monolayer. Tissue-engineered HCEC monolayer could potentially be used to treat corneal blindness due to corneal endothelium dysfunction. Here, we exploited a sequential hybrid (physical followed by UV) crosslinking to create an improved material, named as GelMA+, with over 8-fold increase in mechanical strength as compared to regular GelMA. The presence of physical associations increased the subsequent UV-crosslinking efficiency resulting in robust materials able to withstand standard endothelium insertion surgical device loading. Favorable biodegradation kinetics were also measured in vitro and in vivo . We achieved hydrogels patterning with nano-scale resolution by use of oxygen impermeable stamps that overcome the limitations of PDMS based molding processes. Primary HCEC monolayers grown on GelMA+ carrier patterned with pillars of optimal dimension demonstrated improved zona-occludin-1 expression, higher cell density and cell size homogeneity, which are indications of functionally-superior transplantable monolayers. The hybrid crosslinking and fabrication approach offers potential utility for development of implantable tissue-engineered cell-carrier constructs with enhanced bio-functional properties.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2016.12.026</identifier><identifier>PMID: 28061402</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Cells, Cultured ; Cornea - cytology ; Cornea - growth &amp; development ; Cross-Linking Reagents - chemistry ; Dentistry ; Elastic Modulus ; Endothelium, Corneal - cytology ; Endothelium, Corneal - transplantation ; Gelatin - chemistry ; GelMA ; Human corneal endothelium ; Humans ; Hydrogel membrane ; Hydrogels ; Hydrogels - chemistry ; Materials Testing ; Methacrylates - chemistry ; Nano-patterning ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Photo-crosslinking ; Stress, Mechanical ; Surface Properties ; Tissue Engineering - instrumentation ; Tissue Engineering - methods ; Tissue Scaffolds</subject><ispartof>Biomaterials, 2017-03, Vol.120, p.139-154</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright © 2017 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-46280ee1c38f003b0e0e313e14b7197d7be88b5e4369a1d4c2d899ca8bc72c913</citedby><cites>FETCH-LOGICAL-c435t-46280ee1c38f003b0e0e313e14b7197d7be88b5e4369a1d4c2d899ca8bc72c913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2016.12.026$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28061402$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rizwan, Muhammad</creatorcontrib><creatorcontrib>Peh, Gary S.L</creatorcontrib><creatorcontrib>Ang, Heng-Pei</creatorcontrib><creatorcontrib>Chan Lwin, Nyein</creatorcontrib><creatorcontrib>Adnan, Khadijah</creatorcontrib><creatorcontrib>Mehta, Jodhbir S</creatorcontrib><creatorcontrib>Tan, Wui Siew</creatorcontrib><creatorcontrib>Yim, Evelyn K.F</creatorcontrib><title>Sequentially-crosslinked bioactive hydrogels as nano-patterned substrates with customizable stiffness and degradation for corneal tissue engineering applications</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract Naturally-bioactive hydrogels like gelatin provide favorable properties for tissue-engineering but lack sufficient mechanical strength for use as implantable tissue engineering substrates. Complex fabrication or multi-component additives can improve material strength, but often compromises other properties. Studies have shown gelatin methacrylate (GelMA) as a bioactive hydrogel with diverse tissue growth applications. We hypothesize that, with suitable material modifications, GelMA could be employed for growth and implantation of tissue-engineered human corneal endothelial cell (HCEC) monolayer. Tissue-engineered HCEC monolayer could potentially be used to treat corneal blindness due to corneal endothelium dysfunction. Here, we exploited a sequential hybrid (physical followed by UV) crosslinking to create an improved material, named as GelMA+, with over 8-fold increase in mechanical strength as compared to regular GelMA. The presence of physical associations increased the subsequent UV-crosslinking efficiency resulting in robust materials able to withstand standard endothelium insertion surgical device loading. Favorable biodegradation kinetics were also measured in vitro and in vivo . We achieved hydrogels patterning with nano-scale resolution by use of oxygen impermeable stamps that overcome the limitations of PDMS based molding processes. Primary HCEC monolayers grown on GelMA+ carrier patterned with pillars of optimal dimension demonstrated improved zona-occludin-1 expression, higher cell density and cell size homogeneity, which are indications of functionally-superior transplantable monolayers. The hybrid crosslinking and fabrication approach offers potential utility for development of implantable tissue-engineered cell-carrier constructs with enhanced bio-functional properties.</description><subject>Advanced Basic Science</subject><subject>Cells, Cultured</subject><subject>Cornea - cytology</subject><subject>Cornea - growth &amp; development</subject><subject>Cross-Linking Reagents - chemistry</subject><subject>Dentistry</subject><subject>Elastic Modulus</subject><subject>Endothelium, Corneal - cytology</subject><subject>Endothelium, Corneal - transplantation</subject><subject>Gelatin - chemistry</subject><subject>GelMA</subject><subject>Human corneal endothelium</subject><subject>Humans</subject><subject>Hydrogel membrane</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Materials Testing</subject><subject>Methacrylates - chemistry</subject><subject>Nano-patterning</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Photo-crosslinking</subject><subject>Stress, Mechanical</subject><subject>Surface Properties</subject><subject>Tissue Engineering - instrumentation</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUsluFDEQbSEQGQK_gCxOXLrx0isHJBQIIEXiEDhbbrt64kmPPbjciYa_4U9TkwkIceLkRW9xveeieCV4Jbho32yq0cetyZC8mbGSdFcJWXHZPipWou_6shl487hYcVHLcmiFPCmeIW44nXktnxYnsuct7eWq-HUJPxYImZTmfWlTRJx9uAbHyMPY7G-AXe1dimuYkRlkwYRY7kwm90AoXEbMid6C7NbnK2YXzHHrf5pxBobZT1MAJGJwzME6GWeyj4FNMTEbScHMLHvEBRiEtQ9AM4U1M7vd7O09FJ8XTyYaE148rKfF9_OP384-lxdfP305e39R2lo1uaxbGgpAWNVPnKuRAwclFIh67MTQuW6Evh8bqFU7GOFqK10_DNb0o-2kHYQ6LV4fdXcpUiSY9dajhXk2AeKCWvRN2wxKyYagb4_Q-7wSTHqX_NakvRZcHyrSG_13RfpQkRZSU0VEfvngs4xbcH-ovzshwIcjgBKHGw9Jo_UQLDifwGbtov8_n3f_yFhqllKdr2EPuIlLCgeO0EgEfXn4LIe_IlrFO9VJdQcF-sQl</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Rizwan, Muhammad</creator><creator>Peh, Gary S.L</creator><creator>Ang, Heng-Pei</creator><creator>Chan Lwin, Nyein</creator><creator>Adnan, Khadijah</creator><creator>Mehta, Jodhbir S</creator><creator>Tan, Wui Siew</creator><creator>Yim, Evelyn K.F</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170301</creationdate><title>Sequentially-crosslinked bioactive hydrogels as nano-patterned substrates with customizable stiffness and degradation for corneal tissue engineering applications</title><author>Rizwan, Muhammad ; Peh, Gary S.L ; Ang, Heng-Pei ; Chan Lwin, Nyein ; Adnan, Khadijah ; Mehta, Jodhbir S ; Tan, Wui Siew ; Yim, Evelyn K.F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-46280ee1c38f003b0e0e313e14b7197d7be88b5e4369a1d4c2d899ca8bc72c913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Advanced Basic Science</topic><topic>Cells, Cultured</topic><topic>Cornea - cytology</topic><topic>Cornea - growth &amp; development</topic><topic>Cross-Linking Reagents - chemistry</topic><topic>Dentistry</topic><topic>Elastic Modulus</topic><topic>Endothelium, Corneal - cytology</topic><topic>Endothelium, Corneal - transplantation</topic><topic>Gelatin - chemistry</topic><topic>GelMA</topic><topic>Human corneal endothelium</topic><topic>Humans</topic><topic>Hydrogel membrane</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Materials Testing</topic><topic>Methacrylates - chemistry</topic><topic>Nano-patterning</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Photo-crosslinking</topic><topic>Stress, Mechanical</topic><topic>Surface Properties</topic><topic>Tissue Engineering - instrumentation</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rizwan, Muhammad</creatorcontrib><creatorcontrib>Peh, Gary S.L</creatorcontrib><creatorcontrib>Ang, Heng-Pei</creatorcontrib><creatorcontrib>Chan Lwin, Nyein</creatorcontrib><creatorcontrib>Adnan, Khadijah</creatorcontrib><creatorcontrib>Mehta, Jodhbir S</creatorcontrib><creatorcontrib>Tan, Wui Siew</creatorcontrib><creatorcontrib>Yim, Evelyn K.F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rizwan, Muhammad</au><au>Peh, Gary S.L</au><au>Ang, Heng-Pei</au><au>Chan Lwin, Nyein</au><au>Adnan, Khadijah</au><au>Mehta, Jodhbir S</au><au>Tan, Wui Siew</au><au>Yim, Evelyn K.F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequentially-crosslinked bioactive hydrogels as nano-patterned substrates with customizable stiffness and degradation for corneal tissue engineering applications</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2017-03-01</date><risdate>2017</risdate><volume>120</volume><spage>139</spage><epage>154</epage><pages>139-154</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract Naturally-bioactive hydrogels like gelatin provide favorable properties for tissue-engineering but lack sufficient mechanical strength for use as implantable tissue engineering substrates. Complex fabrication or multi-component additives can improve material strength, but often compromises other properties. Studies have shown gelatin methacrylate (GelMA) as a bioactive hydrogel with diverse tissue growth applications. We hypothesize that, with suitable material modifications, GelMA could be employed for growth and implantation of tissue-engineered human corneal endothelial cell (HCEC) monolayer. Tissue-engineered HCEC monolayer could potentially be used to treat corneal blindness due to corneal endothelium dysfunction. Here, we exploited a sequential hybrid (physical followed by UV) crosslinking to create an improved material, named as GelMA+, with over 8-fold increase in mechanical strength as compared to regular GelMA. The presence of physical associations increased the subsequent UV-crosslinking efficiency resulting in robust materials able to withstand standard endothelium insertion surgical device loading. Favorable biodegradation kinetics were also measured in vitro and in vivo . We achieved hydrogels patterning with nano-scale resolution by use of oxygen impermeable stamps that overcome the limitations of PDMS based molding processes. Primary HCEC monolayers grown on GelMA+ carrier patterned with pillars of optimal dimension demonstrated improved zona-occludin-1 expression, higher cell density and cell size homogeneity, which are indications of functionally-superior transplantable monolayers. The hybrid crosslinking and fabrication approach offers potential utility for development of implantable tissue-engineered cell-carrier constructs with enhanced bio-functional properties.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>28061402</pmid><doi>10.1016/j.biomaterials.2016.12.026</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2017-03, Vol.120, p.139-154
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_1856593325
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Advanced Basic Science
Cells, Cultured
Cornea - cytology
Cornea - growth & development
Cross-Linking Reagents - chemistry
Dentistry
Elastic Modulus
Endothelium, Corneal - cytology
Endothelium, Corneal - transplantation
Gelatin - chemistry
GelMA
Human corneal endothelium
Humans
Hydrogel membrane
Hydrogels
Hydrogels - chemistry
Materials Testing
Methacrylates - chemistry
Nano-patterning
Nanostructures - chemistry
Nanostructures - ultrastructure
Photo-crosslinking
Stress, Mechanical
Surface Properties
Tissue Engineering - instrumentation
Tissue Engineering - methods
Tissue Scaffolds
title Sequentially-crosslinked bioactive hydrogels as nano-patterned substrates with customizable stiffness and degradation for corneal tissue engineering applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T11%3A19%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequentially-crosslinked%20bioactive%20hydrogels%20as%20nano-patterned%20substrates%20with%20customizable%20stiffness%20and%20degradation%20for%20corneal%20tissue%20engineering%20applications&rft.jtitle=Biomaterials&rft.au=Rizwan,%20Muhammad&rft.date=2017-03-01&rft.volume=120&rft.spage=139&rft.epage=154&rft.pages=139-154&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2016.12.026&rft_dat=%3Cproquest_cross%3E1856593325%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1856593325&rft_id=info:pmid/28061402&rft_els_id=S0142961216307372&rfr_iscdi=true