Kinetics of solute acquisition from the dissolution of suspended sediment in subglacial channels
Twenty five laboratory dissolution experiments have been conducted to quantify rates of solute acquisition, measured as Ca2+ concentration against time, from glacigenic sediments suspended in cold, dilute waters. Suspended sediment character was constrained by field‐calibrated ranges of both concent...
Gespeichert in:
Veröffentlicht in: | Hydrological processes 2001-12, Vol.15 (18), p.3487-3497 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3497 |
---|---|
container_issue | 18 |
container_start_page | 3487 |
container_title | Hydrological processes |
container_volume | 15 |
creator | Brown, Giles H. Hubbard, Bryn Seagren, Andrew G. |
description | Twenty five laboratory dissolution experiments have been conducted to quantify rates of solute acquisition, measured as Ca2+ concentration against time, from glacigenic sediments suspended in cold, dilute waters. Suspended sediment character was constrained by field‐calibrated ranges of both concentration in meltwater (g cm−3) and specific surface area by sediment mass (cm2 g−1). This constraint yielded, for the first time in a glacier hydrochemical study, dissolution rate data as a function of the specific sediment surface area by water volume (cm2 cm−3). The resulting experimental data are used to calibrate a kinetic dissolution model, where the rate of solute acquisition is considered in terms of three parameters: an initial concentration C0, reflecting rapid ion‐exchange reactions; an ultimate steady‐state concentration Cs; and a rate parameter k. Results indicate an excellent fit between the laboratory‐measured Ca2+ concentrations and model output, with goodness‐of‐fit, expressed as χ2, reducing in all cases to less than 1·7 × 10−14 following iterative curve fitting for each experiment. Plotting the resulting best‐fit equation parameters against specific surface area by water volume reveals a strong positive relationship for both C0 and Cs, respectively yielding straight‐line slopes of 4·2 × 10−8 (R2 = 0·88) and 1·2 × 10−7 (R2 = 0·77). However, k was found to be insensitive to changes in specific surface area by water volume (R2 = 0·00), largely reflecting the dominance of variability in C0 and Cs in this model. Copyright © 2001 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/hyp.1039 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18561069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18561069</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4199-57cddb75bc5f9a98f38df9288c0dbdff437ecd075d16f3d8e5a2912e9949ed253</originalsourceid><addsrcrecordid>eNp10MFu1DAQBmALgcRSkHgEX0BcQsdxnNhHWpUWsSogihBcjNceswavs80kgn17st0VnDiNNf70a_Qz9lTASwFQn6532_khzT22EGBMJUCr-2wBWquqBd09ZI-IfgBAAxoW7NvbVHBMnngfOfV5GpE7fzslSmPqC49Dv-HjGnlIdPe9X-7pRFssAQMnDGmDZeSpzNvV9-x8cpn7tSsFMz1mD6LLhE-O84R9en1xc35VLd9dvjl_taxcI-YzVedDWHVq5VU0zugodYim1tpDWIUYG9mhD9CpINoog0blaiNqNKYxGGolT9jzQ-526G8npNFuEnnM2RXsJ7JCq1ZAa2b44gD90BMNGO12SBs37KwAu6_QzhXafYUzfXbMdORdjoMrPtE_L5taaqhnVx3cr5Rx9988e_Xl_TH36BON-Puvd8NP23ayU_bz9aU9W57dXH_9-ME28g98c5EU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18561069</pqid></control><display><type>article</type><title>Kinetics of solute acquisition from the dissolution of suspended sediment in subglacial channels</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Brown, Giles H. ; Hubbard, Bryn ; Seagren, Andrew G.</creator><contributor>Moore, RD ; Hardy, JP ; Ming-Ko, Woo (eds) ; Pomeroy, JW</contributor><creatorcontrib>Brown, Giles H. ; Hubbard, Bryn ; Seagren, Andrew G. ; Moore, RD ; Hardy, JP ; Ming-Ko, Woo (eds) ; Pomeroy, JW</creatorcontrib><description>Twenty five laboratory dissolution experiments have been conducted to quantify rates of solute acquisition, measured as Ca2+ concentration against time, from glacigenic sediments suspended in cold, dilute waters. Suspended sediment character was constrained by field‐calibrated ranges of both concentration in meltwater (g cm−3) and specific surface area by sediment mass (cm2 g−1). This constraint yielded, for the first time in a glacier hydrochemical study, dissolution rate data as a function of the specific sediment surface area by water volume (cm2 cm−3). The resulting experimental data are used to calibrate a kinetic dissolution model, where the rate of solute acquisition is considered in terms of three parameters: an initial concentration C0, reflecting rapid ion‐exchange reactions; an ultimate steady‐state concentration Cs; and a rate parameter k. Results indicate an excellent fit between the laboratory‐measured Ca2+ concentrations and model output, with goodness‐of‐fit, expressed as χ2, reducing in all cases to less than 1·7 × 10−14 following iterative curve fitting for each experiment. Plotting the resulting best‐fit equation parameters against specific surface area by water volume reveals a strong positive relationship for both C0 and Cs, respectively yielding straight‐line slopes of 4·2 × 10−8 (R2 = 0·88) and 1·2 × 10−7 (R2 = 0·77). However, k was found to be insensitive to changes in specific surface area by water volume (R2 = 0·00), largely reflecting the dominance of variability in C0 and Cs in this model. Copyright © 2001 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0885-6087</identifier><identifier>EISSN: 1099-1085</identifier><identifier>DOI: 10.1002/hyp.1039</identifier><identifier>CODEN: HYPRE3</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Freshwater ; kinetic dissolution model ; Marine and continental quaternary ; subglacial hydrology ; Surficial geology ; suspended sediment ; within-channel solute acquisition</subject><ispartof>Hydrological processes, 2001-12, Vol.15 (18), p.3487-3497</ispartof><rights>Copyright © 2001 John Wiley & Sons, Ltd.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4199-57cddb75bc5f9a98f38df9288c0dbdff437ecd075d16f3d8e5a2912e9949ed253</citedby><cites>FETCH-LOGICAL-a4199-57cddb75bc5f9a98f38df9288c0dbdff437ecd075d16f3d8e5a2912e9949ed253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhyp.1039$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhyp.1039$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13423802$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Moore, RD</contributor><contributor>Hardy, JP</contributor><contributor>Ming-Ko, Woo (eds)</contributor><contributor>Pomeroy, JW</contributor><creatorcontrib>Brown, Giles H.</creatorcontrib><creatorcontrib>Hubbard, Bryn</creatorcontrib><creatorcontrib>Seagren, Andrew G.</creatorcontrib><title>Kinetics of solute acquisition from the dissolution of suspended sediment in subglacial channels</title><title>Hydrological processes</title><addtitle>Hydrol. Process</addtitle><description>Twenty five laboratory dissolution experiments have been conducted to quantify rates of solute acquisition, measured as Ca2+ concentration against time, from glacigenic sediments suspended in cold, dilute waters. Suspended sediment character was constrained by field‐calibrated ranges of both concentration in meltwater (g cm−3) and specific surface area by sediment mass (cm2 g−1). This constraint yielded, for the first time in a glacier hydrochemical study, dissolution rate data as a function of the specific sediment surface area by water volume (cm2 cm−3). The resulting experimental data are used to calibrate a kinetic dissolution model, where the rate of solute acquisition is considered in terms of three parameters: an initial concentration C0, reflecting rapid ion‐exchange reactions; an ultimate steady‐state concentration Cs; and a rate parameter k. Results indicate an excellent fit between the laboratory‐measured Ca2+ concentrations and model output, with goodness‐of‐fit, expressed as χ2, reducing in all cases to less than 1·7 × 10−14 following iterative curve fitting for each experiment. Plotting the resulting best‐fit equation parameters against specific surface area by water volume reveals a strong positive relationship for both C0 and Cs, respectively yielding straight‐line slopes of 4·2 × 10−8 (R2 = 0·88) and 1·2 × 10−7 (R2 = 0·77). However, k was found to be insensitive to changes in specific surface area by water volume (R2 = 0·00), largely reflecting the dominance of variability in C0 and Cs in this model. Copyright © 2001 John Wiley & Sons, Ltd.</description><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Freshwater</subject><subject>kinetic dissolution model</subject><subject>Marine and continental quaternary</subject><subject>subglacial hydrology</subject><subject>Surficial geology</subject><subject>suspended sediment</subject><subject>within-channel solute acquisition</subject><issn>0885-6087</issn><issn>1099-1085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp10MFu1DAQBmALgcRSkHgEX0BcQsdxnNhHWpUWsSogihBcjNceswavs80kgn17st0VnDiNNf70a_Qz9lTASwFQn6532_khzT22EGBMJUCr-2wBWquqBd09ZI-IfgBAAxoW7NvbVHBMnngfOfV5GpE7fzslSmPqC49Dv-HjGnlIdPe9X-7pRFssAQMnDGmDZeSpzNvV9-x8cpn7tSsFMz1mD6LLhE-O84R9en1xc35VLd9dvjl_taxcI-YzVedDWHVq5VU0zugodYim1tpDWIUYG9mhD9CpINoog0blaiNqNKYxGGolT9jzQ-526G8npNFuEnnM2RXsJ7JCq1ZAa2b44gD90BMNGO12SBs37KwAu6_QzhXafYUzfXbMdORdjoMrPtE_L5taaqhnVx3cr5Rx9988e_Xl_TH36BON-Puvd8NP23ayU_bz9aU9W57dXH_9-ME28g98c5EU</recordid><startdate>20011230</startdate><enddate>20011230</enddate><creator>Brown, Giles H.</creator><creator>Hubbard, Bryn</creator><creator>Seagren, Andrew G.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20011230</creationdate><title>Kinetics of solute acquisition from the dissolution of suspended sediment in subglacial channels</title><author>Brown, Giles H. ; Hubbard, Bryn ; Seagren, Andrew G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4199-57cddb75bc5f9a98f38df9288c0dbdff437ecd075d16f3d8e5a2912e9949ed253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Freshwater</topic><topic>kinetic dissolution model</topic><topic>Marine and continental quaternary</topic><topic>subglacial hydrology</topic><topic>Surficial geology</topic><topic>suspended sediment</topic><topic>within-channel solute acquisition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brown, Giles H.</creatorcontrib><creatorcontrib>Hubbard, Bryn</creatorcontrib><creatorcontrib>Seagren, Andrew G.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Hydrological processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brown, Giles H.</au><au>Hubbard, Bryn</au><au>Seagren, Andrew G.</au><au>Moore, RD</au><au>Hardy, JP</au><au>Ming-Ko, Woo (eds)</au><au>Pomeroy, JW</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetics of solute acquisition from the dissolution of suspended sediment in subglacial channels</atitle><jtitle>Hydrological processes</jtitle><addtitle>Hydrol. Process</addtitle><date>2001-12-30</date><risdate>2001</risdate><volume>15</volume><issue>18</issue><spage>3487</spage><epage>3497</epage><pages>3487-3497</pages><issn>0885-6087</issn><eissn>1099-1085</eissn><coden>HYPRE3</coden><abstract>Twenty five laboratory dissolution experiments have been conducted to quantify rates of solute acquisition, measured as Ca2+ concentration against time, from glacigenic sediments suspended in cold, dilute waters. Suspended sediment character was constrained by field‐calibrated ranges of both concentration in meltwater (g cm−3) and specific surface area by sediment mass (cm2 g−1). This constraint yielded, for the first time in a glacier hydrochemical study, dissolution rate data as a function of the specific sediment surface area by water volume (cm2 cm−3). The resulting experimental data are used to calibrate a kinetic dissolution model, where the rate of solute acquisition is considered in terms of three parameters: an initial concentration C0, reflecting rapid ion‐exchange reactions; an ultimate steady‐state concentration Cs; and a rate parameter k. Results indicate an excellent fit between the laboratory‐measured Ca2+ concentrations and model output, with goodness‐of‐fit, expressed as χ2, reducing in all cases to less than 1·7 × 10−14 following iterative curve fitting for each experiment. Plotting the resulting best‐fit equation parameters against specific surface area by water volume reveals a strong positive relationship for both C0 and Cs, respectively yielding straight‐line slopes of 4·2 × 10−8 (R2 = 0·88) and 1·2 × 10−7 (R2 = 0·77). However, k was found to be insensitive to changes in specific surface area by water volume (R2 = 0·00), largely reflecting the dominance of variability in C0 and Cs in this model. Copyright © 2001 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/hyp.1039</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-6087 |
ispartof | Hydrological processes, 2001-12, Vol.15 (18), p.3487-3497 |
issn | 0885-6087 1099-1085 |
language | eng |
recordid | cdi_proquest_miscellaneous_18561069 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Earth sciences Earth, ocean, space Exact sciences and technology Freshwater kinetic dissolution model Marine and continental quaternary subglacial hydrology Surficial geology suspended sediment within-channel solute acquisition |
title | Kinetics of solute acquisition from the dissolution of suspended sediment in subglacial channels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A46%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetics%20of%20solute%20acquisition%20from%20the%20dissolution%20of%20suspended%20sediment%20in%20subglacial%20channels&rft.jtitle=Hydrological%20processes&rft.au=Brown,%20Giles%20H.&rft.date=2001-12-30&rft.volume=15&rft.issue=18&rft.spage=3487&rft.epage=3497&rft.pages=3487-3497&rft.issn=0885-6087&rft.eissn=1099-1085&rft.coden=HYPRE3&rft_id=info:doi/10.1002/hyp.1039&rft_dat=%3Cproquest_cross%3E18561069%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18561069&rft_id=info:pmid/&rfr_iscdi=true |