Kinetics of solute acquisition from the dissolution of suspended sediment in subglacial channels

Twenty five laboratory dissolution experiments have been conducted to quantify rates of solute acquisition, measured as Ca2+ concentration against time, from glacigenic sediments suspended in cold, dilute waters. Suspended sediment character was constrained by field‐calibrated ranges of both concent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrological processes 2001-12, Vol.15 (18), p.3487-3497
Hauptverfasser: Brown, Giles H., Hubbard, Bryn, Seagren, Andrew G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3497
container_issue 18
container_start_page 3487
container_title Hydrological processes
container_volume 15
creator Brown, Giles H.
Hubbard, Bryn
Seagren, Andrew G.
description Twenty five laboratory dissolution experiments have been conducted to quantify rates of solute acquisition, measured as Ca2+ concentration against time, from glacigenic sediments suspended in cold, dilute waters. Suspended sediment character was constrained by field‐calibrated ranges of both concentration in meltwater (g cm−3) and specific surface area by sediment mass (cm2 g−1). This constraint yielded, for the first time in a glacier hydrochemical study, dissolution rate data as a function of the specific sediment surface area by water volume (cm2 cm−3). The resulting experimental data are used to calibrate a kinetic dissolution model, where the rate of solute acquisition is considered in terms of three parameters: an initial concentration C0, reflecting rapid ion‐exchange reactions; an ultimate steady‐state concentration Cs; and a rate parameter k. Results indicate an excellent fit between the laboratory‐measured Ca2+ concentrations and model output, with goodness‐of‐fit, expressed as χ2, reducing in all cases to less than 1·7 × 10−14 following iterative curve fitting for each experiment. Plotting the resulting best‐fit equation parameters against specific surface area by water volume reveals a strong positive relationship for both C0 and Cs, respectively yielding straight‐line slopes of 4·2 × 10−8 (R2 = 0·88) and 1·2 × 10−7 (R2 = 0·77). However, k was found to be insensitive to changes in specific surface area by water volume (R2 = 0·00), largely reflecting the dominance of variability in C0 and Cs in this model. Copyright © 2001 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/hyp.1039
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18561069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18561069</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4199-57cddb75bc5f9a98f38df9288c0dbdff437ecd075d16f3d8e5a2912e9949ed253</originalsourceid><addsrcrecordid>eNp10MFu1DAQBmALgcRSkHgEX0BcQsdxnNhHWpUWsSogihBcjNceswavs80kgn17st0VnDiNNf70a_Qz9lTASwFQn6532_khzT22EGBMJUCr-2wBWquqBd09ZI-IfgBAAxoW7NvbVHBMnngfOfV5GpE7fzslSmPqC49Dv-HjGnlIdPe9X-7pRFssAQMnDGmDZeSpzNvV9-x8cpn7tSsFMz1mD6LLhE-O84R9en1xc35VLd9dvjl_taxcI-YzVedDWHVq5VU0zugodYim1tpDWIUYG9mhD9CpINoog0blaiNqNKYxGGolT9jzQ-526G8npNFuEnnM2RXsJ7JCq1ZAa2b44gD90BMNGO12SBs37KwAu6_QzhXafYUzfXbMdORdjoMrPtE_L5taaqhnVx3cr5Rx9988e_Xl_TH36BON-Puvd8NP23ayU_bz9aU9W57dXH_9-ME28g98c5EU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18561069</pqid></control><display><type>article</type><title>Kinetics of solute acquisition from the dissolution of suspended sediment in subglacial channels</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Brown, Giles H. ; Hubbard, Bryn ; Seagren, Andrew G.</creator><contributor>Moore, RD ; Hardy, JP ; Ming-Ko, Woo (eds) ; Pomeroy, JW</contributor><creatorcontrib>Brown, Giles H. ; Hubbard, Bryn ; Seagren, Andrew G. ; Moore, RD ; Hardy, JP ; Ming-Ko, Woo (eds) ; Pomeroy, JW</creatorcontrib><description>Twenty five laboratory dissolution experiments have been conducted to quantify rates of solute acquisition, measured as Ca2+ concentration against time, from glacigenic sediments suspended in cold, dilute waters. Suspended sediment character was constrained by field‐calibrated ranges of both concentration in meltwater (g cm−3) and specific surface area by sediment mass (cm2 g−1). This constraint yielded, for the first time in a glacier hydrochemical study, dissolution rate data as a function of the specific sediment surface area by water volume (cm2 cm−3). The resulting experimental data are used to calibrate a kinetic dissolution model, where the rate of solute acquisition is considered in terms of three parameters: an initial concentration C0, reflecting rapid ion‐exchange reactions; an ultimate steady‐state concentration Cs; and a rate parameter k. Results indicate an excellent fit between the laboratory‐measured Ca2+ concentrations and model output, with goodness‐of‐fit, expressed as χ2, reducing in all cases to less than 1·7 × 10−14 following iterative curve fitting for each experiment. Plotting the resulting best‐fit equation parameters against specific surface area by water volume reveals a strong positive relationship for both C0 and Cs, respectively yielding straight‐line slopes of 4·2 × 10−8 (R2 = 0·88) and 1·2 × 10−7 (R2 = 0·77). However, k was found to be insensitive to changes in specific surface area by water volume (R2 = 0·00), largely reflecting the dominance of variability in C0 and Cs in this model. Copyright © 2001 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0885-6087</identifier><identifier>EISSN: 1099-1085</identifier><identifier>DOI: 10.1002/hyp.1039</identifier><identifier>CODEN: HYPRE3</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Freshwater ; kinetic dissolution model ; Marine and continental quaternary ; subglacial hydrology ; Surficial geology ; suspended sediment ; within-channel solute acquisition</subject><ispartof>Hydrological processes, 2001-12, Vol.15 (18), p.3487-3497</ispartof><rights>Copyright © 2001 John Wiley &amp; Sons, Ltd.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4199-57cddb75bc5f9a98f38df9288c0dbdff437ecd075d16f3d8e5a2912e9949ed253</citedby><cites>FETCH-LOGICAL-a4199-57cddb75bc5f9a98f38df9288c0dbdff437ecd075d16f3d8e5a2912e9949ed253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhyp.1039$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhyp.1039$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13423802$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Moore, RD</contributor><contributor>Hardy, JP</contributor><contributor>Ming-Ko, Woo (eds)</contributor><contributor>Pomeroy, JW</contributor><creatorcontrib>Brown, Giles H.</creatorcontrib><creatorcontrib>Hubbard, Bryn</creatorcontrib><creatorcontrib>Seagren, Andrew G.</creatorcontrib><title>Kinetics of solute acquisition from the dissolution of suspended sediment in subglacial channels</title><title>Hydrological processes</title><addtitle>Hydrol. Process</addtitle><description>Twenty five laboratory dissolution experiments have been conducted to quantify rates of solute acquisition, measured as Ca2+ concentration against time, from glacigenic sediments suspended in cold, dilute waters. Suspended sediment character was constrained by field‐calibrated ranges of both concentration in meltwater (g cm−3) and specific surface area by sediment mass (cm2 g−1). This constraint yielded, for the first time in a glacier hydrochemical study, dissolution rate data as a function of the specific sediment surface area by water volume (cm2 cm−3). The resulting experimental data are used to calibrate a kinetic dissolution model, where the rate of solute acquisition is considered in terms of three parameters: an initial concentration C0, reflecting rapid ion‐exchange reactions; an ultimate steady‐state concentration Cs; and a rate parameter k. Results indicate an excellent fit between the laboratory‐measured Ca2+ concentrations and model output, with goodness‐of‐fit, expressed as χ2, reducing in all cases to less than 1·7 × 10−14 following iterative curve fitting for each experiment. Plotting the resulting best‐fit equation parameters against specific surface area by water volume reveals a strong positive relationship for both C0 and Cs, respectively yielding straight‐line slopes of 4·2 × 10−8 (R2 = 0·88) and 1·2 × 10−7 (R2 = 0·77). However, k was found to be insensitive to changes in specific surface area by water volume (R2 = 0·00), largely reflecting the dominance of variability in C0 and Cs in this model. Copyright © 2001 John Wiley &amp; Sons, Ltd.</description><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Freshwater</subject><subject>kinetic dissolution model</subject><subject>Marine and continental quaternary</subject><subject>subglacial hydrology</subject><subject>Surficial geology</subject><subject>suspended sediment</subject><subject>within-channel solute acquisition</subject><issn>0885-6087</issn><issn>1099-1085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp10MFu1DAQBmALgcRSkHgEX0BcQsdxnNhHWpUWsSogihBcjNceswavs80kgn17st0VnDiNNf70a_Qz9lTASwFQn6532_khzT22EGBMJUCr-2wBWquqBd09ZI-IfgBAAxoW7NvbVHBMnngfOfV5GpE7fzslSmPqC49Dv-HjGnlIdPe9X-7pRFssAQMnDGmDZeSpzNvV9-x8cpn7tSsFMz1mD6LLhE-O84R9en1xc35VLd9dvjl_taxcI-YzVedDWHVq5VU0zugodYim1tpDWIUYG9mhD9CpINoog0blaiNqNKYxGGolT9jzQ-526G8npNFuEnnM2RXsJ7JCq1ZAa2b44gD90BMNGO12SBs37KwAu6_QzhXafYUzfXbMdORdjoMrPtE_L5taaqhnVx3cr5Rx9988e_Xl_TH36BON-Puvd8NP23ayU_bz9aU9W57dXH_9-ME28g98c5EU</recordid><startdate>20011230</startdate><enddate>20011230</enddate><creator>Brown, Giles H.</creator><creator>Hubbard, Bryn</creator><creator>Seagren, Andrew G.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20011230</creationdate><title>Kinetics of solute acquisition from the dissolution of suspended sediment in subglacial channels</title><author>Brown, Giles H. ; Hubbard, Bryn ; Seagren, Andrew G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4199-57cddb75bc5f9a98f38df9288c0dbdff437ecd075d16f3d8e5a2912e9949ed253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Freshwater</topic><topic>kinetic dissolution model</topic><topic>Marine and continental quaternary</topic><topic>subglacial hydrology</topic><topic>Surficial geology</topic><topic>suspended sediment</topic><topic>within-channel solute acquisition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brown, Giles H.</creatorcontrib><creatorcontrib>Hubbard, Bryn</creatorcontrib><creatorcontrib>Seagren, Andrew G.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Hydrological processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brown, Giles H.</au><au>Hubbard, Bryn</au><au>Seagren, Andrew G.</au><au>Moore, RD</au><au>Hardy, JP</au><au>Ming-Ko, Woo (eds)</au><au>Pomeroy, JW</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetics of solute acquisition from the dissolution of suspended sediment in subglacial channels</atitle><jtitle>Hydrological processes</jtitle><addtitle>Hydrol. Process</addtitle><date>2001-12-30</date><risdate>2001</risdate><volume>15</volume><issue>18</issue><spage>3487</spage><epage>3497</epage><pages>3487-3497</pages><issn>0885-6087</issn><eissn>1099-1085</eissn><coden>HYPRE3</coden><abstract>Twenty five laboratory dissolution experiments have been conducted to quantify rates of solute acquisition, measured as Ca2+ concentration against time, from glacigenic sediments suspended in cold, dilute waters. Suspended sediment character was constrained by field‐calibrated ranges of both concentration in meltwater (g cm−3) and specific surface area by sediment mass (cm2 g−1). This constraint yielded, for the first time in a glacier hydrochemical study, dissolution rate data as a function of the specific sediment surface area by water volume (cm2 cm−3). The resulting experimental data are used to calibrate a kinetic dissolution model, where the rate of solute acquisition is considered in terms of three parameters: an initial concentration C0, reflecting rapid ion‐exchange reactions; an ultimate steady‐state concentration Cs; and a rate parameter k. Results indicate an excellent fit between the laboratory‐measured Ca2+ concentrations and model output, with goodness‐of‐fit, expressed as χ2, reducing in all cases to less than 1·7 × 10−14 following iterative curve fitting for each experiment. Plotting the resulting best‐fit equation parameters against specific surface area by water volume reveals a strong positive relationship for both C0 and Cs, respectively yielding straight‐line slopes of 4·2 × 10−8 (R2 = 0·88) and 1·2 × 10−7 (R2 = 0·77). However, k was found to be insensitive to changes in specific surface area by water volume (R2 = 0·00), largely reflecting the dominance of variability in C0 and Cs in this model. Copyright © 2001 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/hyp.1039</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-6087
ispartof Hydrological processes, 2001-12, Vol.15 (18), p.3487-3497
issn 0885-6087
1099-1085
language eng
recordid cdi_proquest_miscellaneous_18561069
source Wiley Online Library Journals Frontfile Complete
subjects Earth sciences
Earth, ocean, space
Exact sciences and technology
Freshwater
kinetic dissolution model
Marine and continental quaternary
subglacial hydrology
Surficial geology
suspended sediment
within-channel solute acquisition
title Kinetics of solute acquisition from the dissolution of suspended sediment in subglacial channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A46%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetics%20of%20solute%20acquisition%20from%20the%20dissolution%20of%20suspended%20sediment%20in%20subglacial%20channels&rft.jtitle=Hydrological%20processes&rft.au=Brown,%20Giles%20H.&rft.date=2001-12-30&rft.volume=15&rft.issue=18&rft.spage=3487&rft.epage=3497&rft.pages=3487-3497&rft.issn=0885-6087&rft.eissn=1099-1085&rft.coden=HYPRE3&rft_id=info:doi/10.1002/hyp.1039&rft_dat=%3Cproquest_cross%3E18561069%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18561069&rft_id=info:pmid/&rfr_iscdi=true