Stratification and dynamics of microbial loop communities in Lake Fryxell, Antarctica

1. Lake Fryxell, situated in the McMurdo Dry Valleys, Antarctica, offers the opportunity to study microbial loop processes in the absence of crustacean zooplankton and other higher organisms. This is the first study of Lake Fryxell to provide detailed temporal and vertical variations of microbial lo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Freshwater biology 2000-08, Vol.44 (4), p.649-661
Hauptverfasser: Roberts, Emily C., Laybourn-Parry, Johanna, McKnight, Diane M., Novarino, Gianfranco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 661
container_issue 4
container_start_page 649
container_title Freshwater biology
container_volume 44
creator Roberts, Emily C.
Laybourn-Parry, Johanna
McKnight, Diane M.
Novarino, Gianfranco
description 1. Lake Fryxell, situated in the McMurdo Dry Valleys, Antarctica, offers the opportunity to study microbial loop processes in the absence of crustacean zooplankton and other higher organisms. This is the first study of Lake Fryxell to provide detailed temporal and vertical variations of microbial loop organisms. 
2. Protozoan communities are concentrated around the chemocline (9–10 m) in Lake Fryxell. Phototrophic nanoflagellates (PNAN), heterotrophic nanoflagellates (HNAN) and ciliates formed deep maxima of 14 580, 694 and 58 cells mL−1 respectively. Although abundance and biomass at the chemocline was high, diversity of protozoa was low, Plagiocampa accounting for> 80% of the total ciliate biomass. 
3. In the mixolimnion (4.5–8 m), protozoa were less abundant, but more diverse, with 24 ciliate morphotypes being identified within this region of the water column. Inter‐annual variability of protozoan biomass and abundance was greater in the mixolimnion than at the chemocline due to more variable nutrient and prey concentrations. 
4. Physicochemical gradients in Lake Fryxell were very stable because the perennial ice cover reduced wind driven currents. As a consequence, ciliate species occurred in distinct depth strata, Monodinium being most abundant directly beneath the ice cover, Askenasia having maximum abundance at 8 m and Plagiocampa dominating ciliate biomass at the chemocline. The lack of vertical mixing reduced seasonal successions of PNAN and ciliate species. Three cryptophyte species dominated the PNAN community at all times (>79% of total biomass).
doi_str_mv 10.1046/j.1365-2427.2000.00612.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18557645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18557645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4392-66121e5e9942ba306df3ec8a259ac8d2b8ba764189550c7a95f390c3cbe486043</originalsourceid><addsrcrecordid>eNqNkEtP4zAUhS0EEuXxH7xArEjGj9hxJDa0omVExUOAWFo3riO55FHsVLT_HmeKmCVsfC35O-ceH4QwJSklmfyzTCmXImEZy1NGCEkJkZSlmz00-n7YRyMS2USQnByioxCWEVQiZyP08tR76F3lTDy7FkO7wIttC40zAXcVjtN3pYMa1123wqZrmnXremcDdi2ew5vFU7_d2Lq-wFdtD9700eoEHVRQB3v6NY_Ry_T6eXKTzO9nfydX88RkvGCJjEmpFbYoMlYCJ3JRcWsUMFGAUQtWqhJymVFVCEFMDoWoeEEMN6XNlCQZP0bnO9-V797XNvS6ccHEMNDabh00VUJEA_EzGCleCBVBtQPjt0PwttIr7xrwW02JHgrXSz30qode9VC4_le43kTp2dcOCAbqykNrXPivz2Qu6BDlcod9uNpuf22vp6_jeInyZCd3obebbzn4Ny1zngv9ejfTYnLz-DC-vdVj_gkoiKHs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17643958</pqid></control><display><type>article</type><title>Stratification and dynamics of microbial loop communities in Lake Fryxell, Antarctica</title><source>Access via Wiley Online Library</source><creator>Roberts, Emily C. ; Laybourn-Parry, Johanna ; McKnight, Diane M. ; Novarino, Gianfranco</creator><creatorcontrib>Roberts, Emily C. ; Laybourn-Parry, Johanna ; McKnight, Diane M. ; Novarino, Gianfranco</creatorcontrib><description>1. Lake Fryxell, situated in the McMurdo Dry Valleys, Antarctica, offers the opportunity to study microbial loop processes in the absence of crustacean zooplankton and other higher organisms. This is the first study of Lake Fryxell to provide detailed temporal and vertical variations of microbial loop organisms. 
2. Protozoan communities are concentrated around the chemocline (9–10 m) in Lake Fryxell. Phototrophic nanoflagellates (PNAN), heterotrophic nanoflagellates (HNAN) and ciliates formed deep maxima of 14 580, 694 and 58 cells mL−1 respectively. Although abundance and biomass at the chemocline was high, diversity of protozoa was low, Plagiocampa accounting for&gt; 80% of the total ciliate biomass. 
3. In the mixolimnion (4.5–8 m), protozoa were less abundant, but more diverse, with 24 ciliate morphotypes being identified within this region of the water column. Inter‐annual variability of protozoan biomass and abundance was greater in the mixolimnion than at the chemocline due to more variable nutrient and prey concentrations. 
4. Physicochemical gradients in Lake Fryxell were very stable because the perennial ice cover reduced wind driven currents. As a consequence, ciliate species occurred in distinct depth strata, Monodinium being most abundant directly beneath the ice cover, Askenasia having maximum abundance at 8 m and Plagiocampa dominating ciliate biomass at the chemocline. The lack of vertical mixing reduced seasonal successions of PNAN and ciliate species. Three cryptophyte species dominated the PNAN community at all times (&gt;79% of total biomass).</description><identifier>ISSN: 0046-5070</identifier><identifier>EISSN: 1365-2427</identifier><identifier>DOI: 10.1046/j.1365-2427.2000.00612.x</identifier><identifier>CODEN: FWBLAB</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Animal, plant and microbial ecology ; Antarctica ; Biological and medical sciences ; Ciliata ; ciliates ; Cryptophyceae ; cryptophytes ; Freshwater ; Fundamental and applied biological sciences. Psychology ; lakes ; Microbial ecology ; Protozoa ; Various environments (extraatmospheric space, air, water)</subject><ispartof>Freshwater biology, 2000-08, Vol.44 (4), p.649-661</ispartof><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4392-66121e5e9942ba306df3ec8a259ac8d2b8ba764189550c7a95f390c3cbe486043</citedby><cites>FETCH-LOGICAL-c4392-66121e5e9942ba306df3ec8a259ac8d2b8ba764189550c7a95f390c3cbe486043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1365-2427.2000.00612.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1365-2427.2000.00612.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1467515$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Roberts, Emily C.</creatorcontrib><creatorcontrib>Laybourn-Parry, Johanna</creatorcontrib><creatorcontrib>McKnight, Diane M.</creatorcontrib><creatorcontrib>Novarino, Gianfranco</creatorcontrib><title>Stratification and dynamics of microbial loop communities in Lake Fryxell, Antarctica</title><title>Freshwater biology</title><addtitle>Freshwater Biology</addtitle><description>1. Lake Fryxell, situated in the McMurdo Dry Valleys, Antarctica, offers the opportunity to study microbial loop processes in the absence of crustacean zooplankton and other higher organisms. This is the first study of Lake Fryxell to provide detailed temporal and vertical variations of microbial loop organisms. 
2. Protozoan communities are concentrated around the chemocline (9–10 m) in Lake Fryxell. Phototrophic nanoflagellates (PNAN), heterotrophic nanoflagellates (HNAN) and ciliates formed deep maxima of 14 580, 694 and 58 cells mL−1 respectively. Although abundance and biomass at the chemocline was high, diversity of protozoa was low, Plagiocampa accounting for&gt; 80% of the total ciliate biomass. 
3. In the mixolimnion (4.5–8 m), protozoa were less abundant, but more diverse, with 24 ciliate morphotypes being identified within this region of the water column. Inter‐annual variability of protozoan biomass and abundance was greater in the mixolimnion than at the chemocline due to more variable nutrient and prey concentrations. 
4. Physicochemical gradients in Lake Fryxell were very stable because the perennial ice cover reduced wind driven currents. As a consequence, ciliate species occurred in distinct depth strata, Monodinium being most abundant directly beneath the ice cover, Askenasia having maximum abundance at 8 m and Plagiocampa dominating ciliate biomass at the chemocline. The lack of vertical mixing reduced seasonal successions of PNAN and ciliate species. Three cryptophyte species dominated the PNAN community at all times (&gt;79% of total biomass).</description><subject>Animal, plant and microbial ecology</subject><subject>Antarctica</subject><subject>Biological and medical sciences</subject><subject>Ciliata</subject><subject>ciliates</subject><subject>Cryptophyceae</subject><subject>cryptophytes</subject><subject>Freshwater</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>lakes</subject><subject>Microbial ecology</subject><subject>Protozoa</subject><subject>Various environments (extraatmospheric space, air, water)</subject><issn>0046-5070</issn><issn>1365-2427</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqNkEtP4zAUhS0EEuXxH7xArEjGj9hxJDa0omVExUOAWFo3riO55FHsVLT_HmeKmCVsfC35O-ceH4QwJSklmfyzTCmXImEZy1NGCEkJkZSlmz00-n7YRyMS2USQnByioxCWEVQiZyP08tR76F3lTDy7FkO7wIttC40zAXcVjtN3pYMa1123wqZrmnXremcDdi2ew5vFU7_d2Lq-wFdtD9700eoEHVRQB3v6NY_Ry_T6eXKTzO9nfydX88RkvGCJjEmpFbYoMlYCJ3JRcWsUMFGAUQtWqhJymVFVCEFMDoWoeEEMN6XNlCQZP0bnO9-V797XNvS6ccHEMNDabh00VUJEA_EzGCleCBVBtQPjt0PwttIr7xrwW02JHgrXSz30qode9VC4_le43kTp2dcOCAbqykNrXPivz2Qu6BDlcod9uNpuf22vp6_jeInyZCd3obebbzn4Ny1zngv9ejfTYnLz-DC-vdVj_gkoiKHs</recordid><startdate>200008</startdate><enddate>200008</enddate><creator>Roberts, Emily C.</creator><creator>Laybourn-Parry, Johanna</creator><creator>McKnight, Diane M.</creator><creator>Novarino, Gianfranco</creator><general>Blackwell Science Ltd</general><general>Blackwell Science</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7QH</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>M7N</scope></search><sort><creationdate>200008</creationdate><title>Stratification and dynamics of microbial loop communities in Lake Fryxell, Antarctica</title><author>Roberts, Emily C. ; Laybourn-Parry, Johanna ; McKnight, Diane M. ; Novarino, Gianfranco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4392-66121e5e9942ba306df3ec8a259ac8d2b8ba764189550c7a95f390c3cbe486043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Animal, plant and microbial ecology</topic><topic>Antarctica</topic><topic>Biological and medical sciences</topic><topic>Ciliata</topic><topic>ciliates</topic><topic>Cryptophyceae</topic><topic>cryptophytes</topic><topic>Freshwater</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>lakes</topic><topic>Microbial ecology</topic><topic>Protozoa</topic><topic>Various environments (extraatmospheric space, air, water)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roberts, Emily C.</creatorcontrib><creatorcontrib>Laybourn-Parry, Johanna</creatorcontrib><creatorcontrib>McKnight, Diane M.</creatorcontrib><creatorcontrib>Novarino, Gianfranco</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Aqualine</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>Freshwater biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roberts, Emily C.</au><au>Laybourn-Parry, Johanna</au><au>McKnight, Diane M.</au><au>Novarino, Gianfranco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stratification and dynamics of microbial loop communities in Lake Fryxell, Antarctica</atitle><jtitle>Freshwater biology</jtitle><addtitle>Freshwater Biology</addtitle><date>2000-08</date><risdate>2000</risdate><volume>44</volume><issue>4</issue><spage>649</spage><epage>661</epage><pages>649-661</pages><issn>0046-5070</issn><eissn>1365-2427</eissn><coden>FWBLAB</coden><abstract>1. Lake Fryxell, situated in the McMurdo Dry Valleys, Antarctica, offers the opportunity to study microbial loop processes in the absence of crustacean zooplankton and other higher organisms. This is the first study of Lake Fryxell to provide detailed temporal and vertical variations of microbial loop organisms. 
2. Protozoan communities are concentrated around the chemocline (9–10 m) in Lake Fryxell. Phototrophic nanoflagellates (PNAN), heterotrophic nanoflagellates (HNAN) and ciliates formed deep maxima of 14 580, 694 and 58 cells mL−1 respectively. Although abundance and biomass at the chemocline was high, diversity of protozoa was low, Plagiocampa accounting for&gt; 80% of the total ciliate biomass. 
3. In the mixolimnion (4.5–8 m), protozoa were less abundant, but more diverse, with 24 ciliate morphotypes being identified within this region of the water column. Inter‐annual variability of protozoan biomass and abundance was greater in the mixolimnion than at the chemocline due to more variable nutrient and prey concentrations. 
4. Physicochemical gradients in Lake Fryxell were very stable because the perennial ice cover reduced wind driven currents. As a consequence, ciliate species occurred in distinct depth strata, Monodinium being most abundant directly beneath the ice cover, Askenasia having maximum abundance at 8 m and Plagiocampa dominating ciliate biomass at the chemocline. The lack of vertical mixing reduced seasonal successions of PNAN and ciliate species. Three cryptophyte species dominated the PNAN community at all times (&gt;79% of total biomass).</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><doi>10.1046/j.1365-2427.2000.00612.x</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0046-5070
ispartof Freshwater biology, 2000-08, Vol.44 (4), p.649-661
issn 0046-5070
1365-2427
language eng
recordid cdi_proquest_miscellaneous_18557645
source Access via Wiley Online Library
subjects Animal, plant and microbial ecology
Antarctica
Biological and medical sciences
Ciliata
ciliates
Cryptophyceae
cryptophytes
Freshwater
Fundamental and applied biological sciences. Psychology
lakes
Microbial ecology
Protozoa
Various environments (extraatmospheric space, air, water)
title Stratification and dynamics of microbial loop communities in Lake Fryxell, Antarctica
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T03%3A51%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stratification%20and%20dynamics%20of%20microbial%20loop%20communities%20in%20Lake%20Fryxell,%20Antarctica&rft.jtitle=Freshwater%20biology&rft.au=Roberts,%20Emily%20C.&rft.date=2000-08&rft.volume=44&rft.issue=4&rft.spage=649&rft.epage=661&rft.pages=649-661&rft.issn=0046-5070&rft.eissn=1365-2427&rft.coden=FWBLAB&rft_id=info:doi/10.1046/j.1365-2427.2000.00612.x&rft_dat=%3Cproquest_cross%3E18557645%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17643958&rft_id=info:pmid/&rfr_iscdi=true