Assimilation of Synthetic GOES-R ABI Infrared Brightness Temperatures and WSR-88D Radar Observations in a High-Resolution OSSE
This study uses an observing system simulation experiment to explore the impact of assimilating GOES-R Advanced Baseline Imager (ABI) 6.95-μm brightness temperatures and Weather Surveillance Radar-1988 Doppler (WSR-88D) reflectivity and radial velocity observations in an ensemble data assimilation s...
Gespeichert in:
Veröffentlicht in: | Monthly weather review 2016-09, Vol.144 (9), p.3159-3180 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3180 |
---|---|
container_issue | 9 |
container_start_page | 3159 |
container_title | Monthly weather review |
container_volume | 144 |
creator | Cintineo, Rebecca M Otkin, Jason A Jones, Thomas A Koch, Steven Stensrud, David J |
description | This study uses an observing system simulation experiment to explore the impact of assimilating GOES-R Advanced Baseline Imager (ABI) 6.95-μm brightness temperatures and Weather Surveillance Radar-1988 Doppler (WSR-88D) reflectivity and radial velocity observations in an ensemble data assimilation system. A high-resolution truth simulation was used to create synthetic radar and satellite observations of a severe weather event that occurred across the U.S. central plains on 4–5 June 2005. The experiment employs the Weather Research and Forecasting Model at 4-km horizontal grid spacing and the ensemble adjustment Kalman filter algorithm in the Data Assimilation Research Testbed system. The ability of GOES-R ABI brightness temperatures to improve the analysis and forecast accuracy when assimilated separately or simultaneously with Doppler radar reflectivity and radial velocity observations was assessed, along with the use of bias correction and different covariance localization radii for the brightness temperatures. Results show that the radar observations accurately capture the structure of a portion of the storm complex by the end of the assimilation period, but that more of the storms and atmospheric features are reproduced and the accuracy of the ensuing forecast improved when the brightness temperatures are also assimilated. |
doi_str_mv | 10.1175/MWR-D-15-0366.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855396606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4241714721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-3e5865cde563e2a53eb5fd3e8cb833b61a8f1e30c8d19ac9823826ce07b229313</originalsourceid><addsrcrecordid>eNqN0UFv1DAQBWALgcRSOHO1xIWLW48ndpzjtru0K7VaKSnq0XKcCU2VTRY7QeqF307acuKAeprLN280eox9BnkKkOuzm7tSbARoIdGYU3jDVqCVFDIr8C1bSalyIU2WvWcfUnqQUhqTqRX7vU6pO3S9n7px4GPLq8dhuqepC_xyv61EydfnO74b2ugjNfw8dj_up4FS4rd0OFL00xwpcT80_K4qhbUbXvrGR76vE8Vfz7GJdwP3_GpZFSWlsZ-fj-2ravuRvWt9n-jT33nCvn_b3l5ciev95e5ifS1ClstJIGlrdGhIGyTlNVKt2wbJhtoi1ga8bYFQBttA4UNhFVplAsm8VqpAwBP29SX3GMefM6XJHboUqO_9QOOcHFitsTBGmlfQzGQgZYEL_fIPfRjnOCyPOGVVngMg2v8psGhsjirTizp7USGOKUVq3TF2Bx8fHUj3VLBbCnYbB9o9FewA_wBsWJYV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1836873245</pqid></control><display><type>article</type><title>Assimilation of Synthetic GOES-R ABI Infrared Brightness Temperatures and WSR-88D Radar Observations in a High-Resolution OSSE</title><source>Free E-Journal (出版社公開部分のみ)</source><source>Alma/SFX Local Collection</source><source>AMS Journals (Meteorology)</source><creator>Cintineo, Rebecca M ; Otkin, Jason A ; Jones, Thomas A ; Koch, Steven ; Stensrud, David J</creator><creatorcontrib>Cintineo, Rebecca M ; Otkin, Jason A ; Jones, Thomas A ; Koch, Steven ; Stensrud, David J</creatorcontrib><description>This study uses an observing system simulation experiment to explore the impact of assimilating GOES-R Advanced Baseline Imager (ABI) 6.95-μm brightness temperatures and Weather Surveillance Radar-1988 Doppler (WSR-88D) reflectivity and radial velocity observations in an ensemble data assimilation system. A high-resolution truth simulation was used to create synthetic radar and satellite observations of a severe weather event that occurred across the U.S. central plains on 4–5 June 2005. The experiment employs the Weather Research and Forecasting Model at 4-km horizontal grid spacing and the ensemble adjustment Kalman filter algorithm in the Data Assimilation Research Testbed system. The ability of GOES-R ABI brightness temperatures to improve the analysis and forecast accuracy when assimilated separately or simultaneously with Doppler radar reflectivity and radial velocity observations was assessed, along with the use of bias correction and different covariance localization radii for the brightness temperatures. Results show that the radar observations accurately capture the structure of a portion of the storm complex by the end of the assimilation period, but that more of the storms and atmospheric features are reproduced and the accuracy of the ensuing forecast improved when the brightness temperatures are also assimilated.</description><identifier>ISSN: 0027-0644</identifier><identifier>EISSN: 1520-0493</identifier><identifier>DOI: 10.1175/MWR-D-15-0366.1</identifier><identifier>CODEN: MWREAB</identifier><language>eng</language><publisher>Washington: American Meteorological Society</publisher><subject>Accuracy ; Algorithms ; Brightness ; Brightness temperature ; Climatology ; Clouds ; Data assimilation ; Data collection ; Doppler radar ; Doppler sonar ; Forecast accuracy ; High resolution ; Kalman filters ; Localization ; Mathematical models ; Meteorological satellites ; Radar ; Radar reflectivity ; Radial velocity ; Reflectance ; Satellite observation ; Satellites ; Sensors ; Severe weather ; Simulation ; Storms ; Studies ; Surveillance radar ; Temperature ; Velocity ; Weather ; Weather forecasting</subject><ispartof>Monthly weather review, 2016-09, Vol.144 (9), p.3159-3180</ispartof><rights>Copyright American Meteorological Society Sep 2016</rights><rights>Copyright American Meteorological Society 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-3e5865cde563e2a53eb5fd3e8cb833b61a8f1e30c8d19ac9823826ce07b229313</citedby><cites>FETCH-LOGICAL-c470t-3e5865cde563e2a53eb5fd3e8cb833b61a8f1e30c8d19ac9823826ce07b229313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3668,27901,27902</link.rule.ids></links><search><creatorcontrib>Cintineo, Rebecca M</creatorcontrib><creatorcontrib>Otkin, Jason A</creatorcontrib><creatorcontrib>Jones, Thomas A</creatorcontrib><creatorcontrib>Koch, Steven</creatorcontrib><creatorcontrib>Stensrud, David J</creatorcontrib><title>Assimilation of Synthetic GOES-R ABI Infrared Brightness Temperatures and WSR-88D Radar Observations in a High-Resolution OSSE</title><title>Monthly weather review</title><description>This study uses an observing system simulation experiment to explore the impact of assimilating GOES-R Advanced Baseline Imager (ABI) 6.95-μm brightness temperatures and Weather Surveillance Radar-1988 Doppler (WSR-88D) reflectivity and radial velocity observations in an ensemble data assimilation system. A high-resolution truth simulation was used to create synthetic radar and satellite observations of a severe weather event that occurred across the U.S. central plains on 4–5 June 2005. The experiment employs the Weather Research and Forecasting Model at 4-km horizontal grid spacing and the ensemble adjustment Kalman filter algorithm in the Data Assimilation Research Testbed system. The ability of GOES-R ABI brightness temperatures to improve the analysis and forecast accuracy when assimilated separately or simultaneously with Doppler radar reflectivity and radial velocity observations was assessed, along with the use of bias correction and different covariance localization radii for the brightness temperatures. Results show that the radar observations accurately capture the structure of a portion of the storm complex by the end of the assimilation period, but that more of the storms and atmospheric features are reproduced and the accuracy of the ensuing forecast improved when the brightness temperatures are also assimilated.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Brightness</subject><subject>Brightness temperature</subject><subject>Climatology</subject><subject>Clouds</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Doppler radar</subject><subject>Doppler sonar</subject><subject>Forecast accuracy</subject><subject>High resolution</subject><subject>Kalman filters</subject><subject>Localization</subject><subject>Mathematical models</subject><subject>Meteorological satellites</subject><subject>Radar</subject><subject>Radar reflectivity</subject><subject>Radial velocity</subject><subject>Reflectance</subject><subject>Satellite observation</subject><subject>Satellites</subject><subject>Sensors</subject><subject>Severe weather</subject><subject>Simulation</subject><subject>Storms</subject><subject>Studies</subject><subject>Surveillance radar</subject><subject>Temperature</subject><subject>Velocity</subject><subject>Weather</subject><subject>Weather forecasting</subject><issn>0027-0644</issn><issn>1520-0493</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN0UFv1DAQBWALgcRSOHO1xIWLW48ndpzjtru0K7VaKSnq0XKcCU2VTRY7QeqF307acuKAeprLN280eox9BnkKkOuzm7tSbARoIdGYU3jDVqCVFDIr8C1bSalyIU2WvWcfUnqQUhqTqRX7vU6pO3S9n7px4GPLq8dhuqepC_xyv61EydfnO74b2ugjNfw8dj_up4FS4rd0OFL00xwpcT80_K4qhbUbXvrGR76vE8Vfz7GJdwP3_GpZFSWlsZ-fj-2ravuRvWt9n-jT33nCvn_b3l5ciev95e5ifS1ClstJIGlrdGhIGyTlNVKt2wbJhtoi1ga8bYFQBttA4UNhFVplAsm8VqpAwBP29SX3GMefM6XJHboUqO_9QOOcHFitsTBGmlfQzGQgZYEL_fIPfRjnOCyPOGVVngMg2v8psGhsjirTizp7USGOKUVq3TF2Bx8fHUj3VLBbCnYbB9o9FewA_wBsWJYV</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Cintineo, Rebecca M</creator><creator>Otkin, Jason A</creator><creator>Jones, Thomas A</creator><creator>Koch, Steven</creator><creator>Stensrud, David J</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20160901</creationdate><title>Assimilation of Synthetic GOES-R ABI Infrared Brightness Temperatures and WSR-88D Radar Observations in a High-Resolution OSSE</title><author>Cintineo, Rebecca M ; Otkin, Jason A ; Jones, Thomas A ; Koch, Steven ; Stensrud, David J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-3e5865cde563e2a53eb5fd3e8cb833b61a8f1e30c8d19ac9823826ce07b229313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Brightness</topic><topic>Brightness temperature</topic><topic>Climatology</topic><topic>Clouds</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Doppler radar</topic><topic>Doppler sonar</topic><topic>Forecast accuracy</topic><topic>High resolution</topic><topic>Kalman filters</topic><topic>Localization</topic><topic>Mathematical models</topic><topic>Meteorological satellites</topic><topic>Radar</topic><topic>Radar reflectivity</topic><topic>Radial velocity</topic><topic>Reflectance</topic><topic>Satellite observation</topic><topic>Satellites</topic><topic>Sensors</topic><topic>Severe weather</topic><topic>Simulation</topic><topic>Storms</topic><topic>Studies</topic><topic>Surveillance radar</topic><topic>Temperature</topic><topic>Velocity</topic><topic>Weather</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cintineo, Rebecca M</creatorcontrib><creatorcontrib>Otkin, Jason A</creatorcontrib><creatorcontrib>Jones, Thomas A</creatorcontrib><creatorcontrib>Koch, Steven</creatorcontrib><creatorcontrib>Stensrud, David J</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Military Database</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Monthly weather review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cintineo, Rebecca M</au><au>Otkin, Jason A</au><au>Jones, Thomas A</au><au>Koch, Steven</au><au>Stensrud, David J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assimilation of Synthetic GOES-R ABI Infrared Brightness Temperatures and WSR-88D Radar Observations in a High-Resolution OSSE</atitle><jtitle>Monthly weather review</jtitle><date>2016-09-01</date><risdate>2016</risdate><volume>144</volume><issue>9</issue><spage>3159</spage><epage>3180</epage><pages>3159-3180</pages><issn>0027-0644</issn><eissn>1520-0493</eissn><coden>MWREAB</coden><abstract>This study uses an observing system simulation experiment to explore the impact of assimilating GOES-R Advanced Baseline Imager (ABI) 6.95-μm brightness temperatures and Weather Surveillance Radar-1988 Doppler (WSR-88D) reflectivity and radial velocity observations in an ensemble data assimilation system. A high-resolution truth simulation was used to create synthetic radar and satellite observations of a severe weather event that occurred across the U.S. central plains on 4–5 June 2005. The experiment employs the Weather Research and Forecasting Model at 4-km horizontal grid spacing and the ensemble adjustment Kalman filter algorithm in the Data Assimilation Research Testbed system. The ability of GOES-R ABI brightness temperatures to improve the analysis and forecast accuracy when assimilated separately or simultaneously with Doppler radar reflectivity and radial velocity observations was assessed, along with the use of bias correction and different covariance localization radii for the brightness temperatures. Results show that the radar observations accurately capture the structure of a portion of the storm complex by the end of the assimilation period, but that more of the storms and atmospheric features are reproduced and the accuracy of the ensuing forecast improved when the brightness temperatures are also assimilated.</abstract><cop>Washington</cop><pub>American Meteorological Society</pub><doi>10.1175/MWR-D-15-0366.1</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-0644 |
ispartof | Monthly weather review, 2016-09, Vol.144 (9), p.3159-3180 |
issn | 0027-0644 1520-0493 |
language | eng |
recordid | cdi_proquest_miscellaneous_1855396606 |
source | Free E-Journal (出版社公開部分のみ); Alma/SFX Local Collection; AMS Journals (Meteorology) |
subjects | Accuracy Algorithms Brightness Brightness temperature Climatology Clouds Data assimilation Data collection Doppler radar Doppler sonar Forecast accuracy High resolution Kalman filters Localization Mathematical models Meteorological satellites Radar Radar reflectivity Radial velocity Reflectance Satellite observation Satellites Sensors Severe weather Simulation Storms Studies Surveillance radar Temperature Velocity Weather Weather forecasting |
title | Assimilation of Synthetic GOES-R ABI Infrared Brightness Temperatures and WSR-88D Radar Observations in a High-Resolution OSSE |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T05%3A23%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assimilation%20of%20Synthetic%20GOES-R%20ABI%20Infrared%20Brightness%20Temperatures%20and%20WSR-88D%20Radar%20Observations%20in%20a%20High-Resolution%20OSSE&rft.jtitle=Monthly%20weather%20review&rft.au=Cintineo,%20Rebecca%20M&rft.date=2016-09-01&rft.volume=144&rft.issue=9&rft.spage=3159&rft.epage=3180&rft.pages=3159-3180&rft.issn=0027-0644&rft.eissn=1520-0493&rft.coden=MWREAB&rft_id=info:doi/10.1175/MWR-D-15-0366.1&rft_dat=%3Cproquest_cross%3E4241714721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1836873245&rft_id=info:pmid/&rfr_iscdi=true |