Electronic transport in Si:P [delta]-doped wires
Abstract Despite the importance of Si:P [delta]-doped wires for modern nanoelectronics, there are currently no computational models of electron transport in these devices. In this paper we present a nonequilibrium Green's function model for electronic transport in a [delta]-doped wire, which is...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2015-12, Vol.92 (23) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 23 |
container_start_page | |
container_title | Physical review. B |
container_volume | 92 |
creator | Smith, J S Drumm, D W Budi, A Vaitkus, J A Cole, J H Russo, S P |
description | Abstract Despite the importance of Si:P [delta]-doped wires for modern nanoelectronics, there are currently no computational models of electron transport in these devices. In this paper we present a nonequilibrium Green's function model for electronic transport in a [delta]-doped wire, which is described by a tight-binding Hamiltonian matrix within a single-band effective-mass approximation. We use this transport model to calculate the current-voltage characteristics of a number of [delta]-doped wires, achieving good agreement with experiment. To motivate our transport model we have performed density-functional calculations for a variety of [delta]-doped wires, each with different donor configurations. These calculations also allow us to accurately define the electronic extent of a [delta]-doped wire, which we find to be at least 4.6 nm. |
doi_str_mv | 10.1103/PhysRevB.92.235420 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855394999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1855394999</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_18553949993</originalsourceid><addsrcrecordid>eNqVyr0OAUEUQOGJkBC8gGpKza47-8dVEqLcoBORze4VI2NnzR3E22tErzpfcYQYKQiVgniSX968pecixCiM4jSJoCV6UZJhgJhh--cUumLIfAUAlQFOAXsCVoZK72ytS-ldUXNjnZe6ljs9z-WhIuOLY1DZhir50o54IDrnwjANv-2L8Xq1X26Cxtn7g9ifbppLMqaoyT74pGZpGmOCiPEf6wdtZT_K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855394999</pqid></control><display><type>article</type><title>Electronic transport in Si:P [delta]-doped wires</title><source>American Physical Society Journals</source><creator>Smith, J S ; Drumm, D W ; Budi, A ; Vaitkus, J A ; Cole, J H ; Russo, S P</creator><creatorcontrib>Smith, J S ; Drumm, D W ; Budi, A ; Vaitkus, J A ; Cole, J H ; Russo, S P</creatorcontrib><description>Abstract Despite the importance of Si:P [delta]-doped wires for modern nanoelectronics, there are currently no computational models of electron transport in these devices. In this paper we present a nonequilibrium Green's function model for electronic transport in a [delta]-doped wire, which is described by a tight-binding Hamiltonian matrix within a single-band effective-mass approximation. We use this transport model to calculate the current-voltage characteristics of a number of [delta]-doped wires, achieving good agreement with experiment. To motivate our transport model we have performed density-functional calculations for a variety of [delta]-doped wires, each with different donor configurations. These calculations also allow us to accurately define the electronic extent of a [delta]-doped wire, which we find to be at least 4.6 nm.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.92.235420</identifier><language>eng</language><subject>Approximation ; Condensed matter ; Donors (electronic) ; Electron transport ; Mathematical models ; Transport ; Transportation models ; Wire</subject><ispartof>Physical review. B, 2015-12, Vol.92 (23)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Smith, J S</creatorcontrib><creatorcontrib>Drumm, D W</creatorcontrib><creatorcontrib>Budi, A</creatorcontrib><creatorcontrib>Vaitkus, J A</creatorcontrib><creatorcontrib>Cole, J H</creatorcontrib><creatorcontrib>Russo, S P</creatorcontrib><title>Electronic transport in Si:P [delta]-doped wires</title><title>Physical review. B</title><description>Abstract Despite the importance of Si:P [delta]-doped wires for modern nanoelectronics, there are currently no computational models of electron transport in these devices. In this paper we present a nonequilibrium Green's function model for electronic transport in a [delta]-doped wire, which is described by a tight-binding Hamiltonian matrix within a single-band effective-mass approximation. We use this transport model to calculate the current-voltage characteristics of a number of [delta]-doped wires, achieving good agreement with experiment. To motivate our transport model we have performed density-functional calculations for a variety of [delta]-doped wires, each with different donor configurations. These calculations also allow us to accurately define the electronic extent of a [delta]-doped wire, which we find to be at least 4.6 nm.</description><subject>Approximation</subject><subject>Condensed matter</subject><subject>Donors (electronic)</subject><subject>Electron transport</subject><subject>Mathematical models</subject><subject>Transport</subject><subject>Transportation models</subject><subject>Wire</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqVyr0OAUEUQOGJkBC8gGpKza47-8dVEqLcoBORze4VI2NnzR3E22tErzpfcYQYKQiVgniSX968pecixCiM4jSJoCV6UZJhgJhh--cUumLIfAUAlQFOAXsCVoZK72ytS-ldUXNjnZe6ljs9z-WhIuOLY1DZhir50o54IDrnwjANv-2L8Xq1X26Cxtn7g9ifbppLMqaoyT74pGZpGmOCiPEf6wdtZT_K</recordid><startdate>20151215</startdate><enddate>20151215</enddate><creator>Smith, J S</creator><creator>Drumm, D W</creator><creator>Budi, A</creator><creator>Vaitkus, J A</creator><creator>Cole, J H</creator><creator>Russo, S P</creator><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20151215</creationdate><title>Electronic transport in Si:P [delta]-doped wires</title><author>Smith, J S ; Drumm, D W ; Budi, A ; Vaitkus, J A ; Cole, J H ; Russo, S P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_18553949993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Approximation</topic><topic>Condensed matter</topic><topic>Donors (electronic)</topic><topic>Electron transport</topic><topic>Mathematical models</topic><topic>Transport</topic><topic>Transportation models</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, J S</creatorcontrib><creatorcontrib>Drumm, D W</creatorcontrib><creatorcontrib>Budi, A</creatorcontrib><creatorcontrib>Vaitkus, J A</creatorcontrib><creatorcontrib>Cole, J H</creatorcontrib><creatorcontrib>Russo, S P</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, J S</au><au>Drumm, D W</au><au>Budi, A</au><au>Vaitkus, J A</au><au>Cole, J H</au><au>Russo, S P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic transport in Si:P [delta]-doped wires</atitle><jtitle>Physical review. B</jtitle><date>2015-12-15</date><risdate>2015</risdate><volume>92</volume><issue>23</issue><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Abstract Despite the importance of Si:P [delta]-doped wires for modern nanoelectronics, there are currently no computational models of electron transport in these devices. In this paper we present a nonequilibrium Green's function model for electronic transport in a [delta]-doped wire, which is described by a tight-binding Hamiltonian matrix within a single-band effective-mass approximation. We use this transport model to calculate the current-voltage characteristics of a number of [delta]-doped wires, achieving good agreement with experiment. To motivate our transport model we have performed density-functional calculations for a variety of [delta]-doped wires, each with different donor configurations. These calculations also allow us to accurately define the electronic extent of a [delta]-doped wire, which we find to be at least 4.6 nm.</abstract><doi>10.1103/PhysRevB.92.235420</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2015-12, Vol.92 (23) |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_proquest_miscellaneous_1855394999 |
source | American Physical Society Journals |
subjects | Approximation Condensed matter Donors (electronic) Electron transport Mathematical models Transport Transportation models Wire |
title | Electronic transport in Si:P [delta]-doped wires |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A25%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20transport%20in%20Si:P%20%5Bdelta%5D-doped%20wires&rft.jtitle=Physical%20review.%20B&rft.au=Smith,%20J%20S&rft.date=2015-12-15&rft.volume=92&rft.issue=23&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.92.235420&rft_dat=%3Cproquest%3E1855394999%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855394999&rft_id=info:pmid/&rfr_iscdi=true |