Stabilizing solutions at thresholds of the continuous spectrum and anomalous transmission of waves

A problem of scattering by a resonator connecting two 2D waveguides is studied. The incident wave is one of the waveguide modes taken at the spectral parameter close to a threshold of the continuous spectrum. It is shown that in the general case the reflection coefficient for such a mode is close to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Mechanik 2016-10, Vol.96 (10), p.1245-1260
Hauptverfasser: Korolkov, A. I., Nazarov, Sergei A., Shanin, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1260
container_issue 10
container_start_page 1245
container_title Zeitschrift für angewandte Mathematik und Mechanik
container_volume 96
creator Korolkov, A. I.
Nazarov, Sergei A.
Shanin, A. V.
description A problem of scattering by a resonator connecting two 2D waveguides is studied. The incident wave is one of the waveguide modes taken at the spectral parameter close to a threshold of the continuous spectrum. It is shown that in the general case the reflection coefficient for such a mode is close to ‐1 (this case corresponds to an almost perfect reflection). Also it is shown that in some special cases the reflection coefficient is close to 0, and an almost perfect transmission is observed. The behavior of scattering at near‐threshold frequencies is determined by solutions corresponding to the threshold spectral parameter and crucially depends on whether stabilizing solutions do exist or not. Anomalous transmission is observed when there exist only solutions growing at infinity. A problem of scattering by a resonator connecting two 2D waveguides is studied. The incident wave is one of the waveguide modes taken at the spectral parameter close to a threshold of the continuous spectrum. It is shown that in the general case the reflection coefficient for such a mode is close to ‐1 (this case corresponds to an almost perfect reflection). Also it is shown that in some special cases the reflection coefficient is close to 0, and an almost perfect transmission is observed. The behavior of scattering at near‐threshold frequencies is determined by solutions corresponding to the threshold spectral parameter and crucially depends on whether stabilizing solutions do exist or not. Anomalous transmission is observed when there exist only solutions growing at infinity.
doi_str_mv 10.1002/zamm.201500016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855394115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1855394115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3886-5d54947bf7278cefb03cad4f111c70aedb2a193ed692149348939c4ab77d13a83</originalsourceid><addsrcrecordid>eNqFkcFLHTEQh4O00NfXXnte8OJlXzNJdrM5iq1aUAu2pdBLyGazGt3dvGayWv3rm-WJSC89hDDh-2aGXwj5AHQDlLKPj2YcN4xCRSmFeo-soGJQily8IitKhSgZq-Ub8hbxZkEU8BVpvyXT-sE_-umqwDDMyYcJC5OKdB0dXoehwyL0uXKFDVPy0xxmLHDrbIrzWJipyyeMZlieUzQTjh4xN1mse3Pn8B153ZsB3fune01-HH_-fnRann09-XJ0eFZa3jR1WXWVUEK2vWSysa5vKbemEz0AWEmN61pmQHHX1YqBUFw0iisrTCtlB9w0fE0Odn23MfyeHSadN7FuGMzk8nIamqriSgBUGd3_B70Jc5zydplitVCM5glrstlRNgbE6Hq9jX408UED1UvkeolcP0eeBbUT7v3gHv5D61-H5-cv3XLnekzuz7Nr4q2uJZeV_nlxouETz396SfUl_wvGJ5WR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826492049</pqid></control><display><type>article</type><title>Stabilizing solutions at thresholds of the continuous spectrum and anomalous transmission of waves</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Korolkov, A. I. ; Nazarov, Sergei A. ; Shanin, A. V.</creator><creatorcontrib>Korolkov, A. I. ; Nazarov, Sergei A. ; Shanin, A. V.</creatorcontrib><description>A problem of scattering by a resonator connecting two 2D waveguides is studied. The incident wave is one of the waveguide modes taken at the spectral parameter close to a threshold of the continuous spectrum. It is shown that in the general case the reflection coefficient for such a mode is close to ‐1 (this case corresponds to an almost perfect reflection). Also it is shown that in some special cases the reflection coefficient is close to 0, and an almost perfect transmission is observed. The behavior of scattering at near‐threshold frequencies is determined by solutions corresponding to the threshold spectral parameter and crucially depends on whether stabilizing solutions do exist or not. Anomalous transmission is observed when there exist only solutions growing at infinity. A problem of scattering by a resonator connecting two 2D waveguides is studied. The incident wave is one of the waveguide modes taken at the spectral parameter close to a threshold of the continuous spectrum. It is shown that in the general case the reflection coefficient for such a mode is close to ‐1 (this case corresponds to an almost perfect reflection). Also it is shown that in some special cases the reflection coefficient is close to 0, and an almost perfect transmission is observed. The behavior of scattering at near‐threshold frequencies is determined by solutions corresponding to the threshold spectral parameter and crucially depends on whether stabilizing solutions do exist or not. Anomalous transmission is observed when there exist only solutions growing at infinity.</description><identifier>ISSN: 0044-2267</identifier><identifier>EISSN: 1521-4001</identifier><identifier>DOI: 10.1002/zamm.201500016</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>Incident waves ; Parameters ; Reflectance ; Reflection ; Scattering ; Scattering in waveguides ; scattering matrix ; Spectra ; threshold behavior ; Thresholds ; waveguide modes ; Waveguides</subject><ispartof>Zeitschrift für angewandte Mathematik und Mechanik, 2016-10, Vol.96 (10), p.1245-1260</ispartof><rights>2016 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2016 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3886-5d54947bf7278cefb03cad4f111c70aedb2a193ed692149348939c4ab77d13a83</citedby><cites>FETCH-LOGICAL-c3886-5d54947bf7278cefb03cad4f111c70aedb2a193ed692149348939c4ab77d13a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fzamm.201500016$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fzamm.201500016$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Korolkov, A. I.</creatorcontrib><creatorcontrib>Nazarov, Sergei A.</creatorcontrib><creatorcontrib>Shanin, A. V.</creatorcontrib><title>Stabilizing solutions at thresholds of the continuous spectrum and anomalous transmission of waves</title><title>Zeitschrift für angewandte Mathematik und Mechanik</title><addtitle>Z. Angew. Math. Mech</addtitle><description>A problem of scattering by a resonator connecting two 2D waveguides is studied. The incident wave is one of the waveguide modes taken at the spectral parameter close to a threshold of the continuous spectrum. It is shown that in the general case the reflection coefficient for such a mode is close to ‐1 (this case corresponds to an almost perfect reflection). Also it is shown that in some special cases the reflection coefficient is close to 0, and an almost perfect transmission is observed. The behavior of scattering at near‐threshold frequencies is determined by solutions corresponding to the threshold spectral parameter and crucially depends on whether stabilizing solutions do exist or not. Anomalous transmission is observed when there exist only solutions growing at infinity. A problem of scattering by a resonator connecting two 2D waveguides is studied. The incident wave is one of the waveguide modes taken at the spectral parameter close to a threshold of the continuous spectrum. It is shown that in the general case the reflection coefficient for such a mode is close to ‐1 (this case corresponds to an almost perfect reflection). Also it is shown that in some special cases the reflection coefficient is close to 0, and an almost perfect transmission is observed. The behavior of scattering at near‐threshold frequencies is determined by solutions corresponding to the threshold spectral parameter and crucially depends on whether stabilizing solutions do exist or not. Anomalous transmission is observed when there exist only solutions growing at infinity.</description><subject>Incident waves</subject><subject>Parameters</subject><subject>Reflectance</subject><subject>Reflection</subject><subject>Scattering</subject><subject>Scattering in waveguides</subject><subject>scattering matrix</subject><subject>Spectra</subject><subject>threshold behavior</subject><subject>Thresholds</subject><subject>waveguide modes</subject><subject>Waveguides</subject><issn>0044-2267</issn><issn>1521-4001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkcFLHTEQh4O00NfXXnte8OJlXzNJdrM5iq1aUAu2pdBLyGazGt3dvGayWv3rm-WJSC89hDDh-2aGXwj5AHQDlLKPj2YcN4xCRSmFeo-soGJQily8IitKhSgZq-Ub8hbxZkEU8BVpvyXT-sE_-umqwDDMyYcJC5OKdB0dXoehwyL0uXKFDVPy0xxmLHDrbIrzWJipyyeMZlieUzQTjh4xN1mse3Pn8B153ZsB3fune01-HH_-fnRann09-XJ0eFZa3jR1WXWVUEK2vWSysa5vKbemEz0AWEmN61pmQHHX1YqBUFw0iisrTCtlB9w0fE0Odn23MfyeHSadN7FuGMzk8nIamqriSgBUGd3_B70Jc5zydplitVCM5glrstlRNgbE6Hq9jX408UED1UvkeolcP0eeBbUT7v3gHv5D61-H5-cv3XLnekzuz7Nr4q2uJZeV_nlxouETz396SfUl_wvGJ5WR</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Korolkov, A. I.</creator><creator>Nazarov, Sergei A.</creator><creator>Shanin, A. V.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201610</creationdate><title>Stabilizing solutions at thresholds of the continuous spectrum and anomalous transmission of waves</title><author>Korolkov, A. I. ; Nazarov, Sergei A. ; Shanin, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3886-5d54947bf7278cefb03cad4f111c70aedb2a193ed692149348939c4ab77d13a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Incident waves</topic><topic>Parameters</topic><topic>Reflectance</topic><topic>Reflection</topic><topic>Scattering</topic><topic>Scattering in waveguides</topic><topic>scattering matrix</topic><topic>Spectra</topic><topic>threshold behavior</topic><topic>Thresholds</topic><topic>waveguide modes</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korolkov, A. I.</creatorcontrib><creatorcontrib>Nazarov, Sergei A.</creatorcontrib><creatorcontrib>Shanin, A. V.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Korolkov, A. I.</au><au>Nazarov, Sergei A.</au><au>Shanin, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilizing solutions at thresholds of the continuous spectrum and anomalous transmission of waves</atitle><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle><addtitle>Z. Angew. Math. Mech</addtitle><date>2016-10</date><risdate>2016</risdate><volume>96</volume><issue>10</issue><spage>1245</spage><epage>1260</epage><pages>1245-1260</pages><issn>0044-2267</issn><eissn>1521-4001</eissn><abstract>A problem of scattering by a resonator connecting two 2D waveguides is studied. The incident wave is one of the waveguide modes taken at the spectral parameter close to a threshold of the continuous spectrum. It is shown that in the general case the reflection coefficient for such a mode is close to ‐1 (this case corresponds to an almost perfect reflection). Also it is shown that in some special cases the reflection coefficient is close to 0, and an almost perfect transmission is observed. The behavior of scattering at near‐threshold frequencies is determined by solutions corresponding to the threshold spectral parameter and crucially depends on whether stabilizing solutions do exist or not. Anomalous transmission is observed when there exist only solutions growing at infinity. A problem of scattering by a resonator connecting two 2D waveguides is studied. The incident wave is one of the waveguide modes taken at the spectral parameter close to a threshold of the continuous spectrum. It is shown that in the general case the reflection coefficient for such a mode is close to ‐1 (this case corresponds to an almost perfect reflection). Also it is shown that in some special cases the reflection coefficient is close to 0, and an almost perfect transmission is observed. The behavior of scattering at near‐threshold frequencies is determined by solutions corresponding to the threshold spectral parameter and crucially depends on whether stabilizing solutions do exist or not. Anomalous transmission is observed when there exist only solutions growing at infinity.</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/zamm.201500016</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0044-2267
ispartof Zeitschrift für angewandte Mathematik und Mechanik, 2016-10, Vol.96 (10), p.1245-1260
issn 0044-2267
1521-4001
language eng
recordid cdi_proquest_miscellaneous_1855394115
source Wiley Online Library Journals Frontfile Complete
subjects Incident waves
Parameters
Reflectance
Reflection
Scattering
Scattering in waveguides
scattering matrix
Spectra
threshold behavior
Thresholds
waveguide modes
Waveguides
title Stabilizing solutions at thresholds of the continuous spectrum and anomalous transmission of waves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A44%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilizing%20solutions%20at%20thresholds%20of%20the%20continuous%20spectrum%20and%20anomalous%20transmission%20of%20waves&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Mechanik&rft.au=Korolkov,%20A.%20I.&rft.date=2016-10&rft.volume=96&rft.issue=10&rft.spage=1245&rft.epage=1260&rft.pages=1245-1260&rft.issn=0044-2267&rft.eissn=1521-4001&rft_id=info:doi/10.1002/zamm.201500016&rft_dat=%3Cproquest_cross%3E1855394115%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826492049&rft_id=info:pmid/&rfr_iscdi=true